Math SL PROBLEM SET 77

1. (CA6.2 - N) (CI) Determine the equations of the derivatives of the following functions and hence, determine the slope of the curve at the given point.
(Oxford 7.3, p208)
a. $\quad f(x)=\frac{3 x-2}{2 x-5}$ at the point where $x=1$
b. $\quad g(x)=\frac{x}{e^{x}-1}$ at the point where $x=2$
c. $\quad h(x)=\frac{\sin (x)}{x}$ at the point where $x=\frac{2 \pi}{3}$
2. (SP5.2-R$)(\mathbf{C I})$ There exists a set of five positive integers that has a mean of 5, a median of 5, and a single mode of 8 . Determine the value of each of the five numbers.
(Cirrito 13.3, p474)
3. (T3.5-R) (CI) Solve the equation $2 \cos ^{2}(x)+\sin (x)=-1$ on the interval $0 \leq x \leq 2 \pi$.
(Cirrito 10.4, p351)
4. (T3.6; SP5.4-R)(CA) As shown in the diagram below, angle QPR equals 40° and $\mathrm{PQ}=6$. If the length of QR is a randomly chosen real number between 0 and 6 , then what is the probability that it is possible to construct two different triangles?
(Cirrito 9.5.2, p294)

(Cirrito 20.2, p649)
a. find all stationary points and inflection points of the function,
b. classify the stationary points,
c. state its end behaviours,
d. sketch the function.
5. ($\mathbf{C} 6.5-\mathbf{E})(\mathbf{C I})$ The diagram shows part of the graph of $y=\frac{1}{1-x}$. The area of the shaded region between $x=2$ and $x=k$ is exactly $-\ln 4$ units. Find the exact value of k.

(Cirrito 22.5, p748)

Math SL PROBLEM SET 77

7. (CA6.2, CA6.3-E) (CI) Given the function $g(x)=\frac{x}{x^{2}+1}$, determine the x coordinates of the stationary points and inflection points. Predict the end behaviour of the function and prepare a sketch.
(Cirrito 20.2, p649,; Cirrito 20.3, p672)
8. (CA6.3-R) (CI) Here is a sketch of two different functions, each of which represent the graph of the derivative of some function. For each graph, sketch both the (i) anti-derivative (so in other words, the original function) as well as the derivative of the derivative graph (so in other words the second derivative)
(Cirrito 20.2, p649, Cirrito 20.3, p672)

