Math SL PROBLEM SET 76

1. (SP5.3-R)(CA) The events G and H are independent and it is given that $\mathrm{P}\left(G \cap H^{`}\right)=0.12$ and $\mathrm{P}\left(G^{`} \cap H\right)=0.42$.
(Oxford 3F, p84)
a. Draw a Venn diagram to represent the events G and H.
b. Let $\mathrm{P}(G \cap H)=x$. Find the two possible values of x.
2. (T3.2-R) (CI) Given that $\cos (x)=1 / 4$ and that $\frac{3 \pi}{2} \leq x \leq 2 \pi$, determine the values of:
(Oxford 13.1, p448)
a. $\sin (x)$
b. $\sin (2 x)$
c. $\tan (2 x)$
d. $\sin (4 x)$
3. (C6.3-N)(CA) Use Symbolab to take the following derivatives. Comment on any patterns you observe:
(Cirrito 19.5.3, p638)
a. $\quad f(x)=\frac{2 x-3}{x+1}$
b. $g(x)=\frac{\sin (x)}{x}$
c. $h(x)=\frac{e^{2 x}}{x^{2}}$
 geometric sequence, and $a, b, 9$ are consecutive terms in an arithmetic sequence.
(Cirrito 8.2.3, p261)
4. ($\mathbf{T 3 . 6}-\mathbf{R})(\mathbf{C A})$ The diagram shows a river with parallel banks (edges). A tree on a bank of the river is directly opposite from point A on the opposite bank of the river. Maria wishes to compute the height of the tree. From point A she measures the angle of elevation to the top of the tree to be 52°. She then walks 75 metres along the bank to point B where she measures the angle of elevation to the top of the tree to be 38°.

Determine the height of the tree to three significant figures.
(Cirrito 9.6, p307)

Math SL PROBLEM SET 76

6. (T3.5-R) (CI) Given the function $f(x)=2 \sin ^{2}(x)-\sin (x)$ on the domain of $-\pi \leq x \leq \pi$.
(Cirrito 10.4, p351)
a. Solve for the zeroes of $f(x)$, i.e. solve $2 \sin ^{2}(x)-\sin (x)=0$.
b. Find the equation of the line normal to $f(x)$ at the first positive zero.
7. ($\mathbf{C 6 . 5 - \mathbf { N }) (\mathbf { C I }) \text { Determine the value of the following }}$ definite integrals, given the graph of the function $y=g(x)$.
(Cirrito 22.5, p748)
a. (i) $\int_{0}^{3} g(x) d x$
(ii) $\int_{0}^{6} g(x) d x$
(iii) $\int_{0}^{9} g(x) d x$
b. (i) $\int_{0}^{6}(g(x)+3) d x($ ii $) \int_{0}^{6}-3 g(x) d x$ (iii) $\int_{0}^{6} g(3 x) d x$

8. (V4.2-R)(CA) The line L_{1} has a vector equation $r=\left(\begin{array}{c}2 \\ -3 \\ -3\end{array}\right)+t\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$. A second line, L_{2}, is perpendicular to L_{1} and is represented by $r=\left(\begin{array}{c}3 \\ 12 \\ 5.5\end{array}\right)+q\left(\begin{array}{c}7 \\ x \\ 1\end{array}\right)$.
(Cirrito 12.7, p444)
a. Show that $x=-3$.
b. Find the coordinates of the intersection point of L_{2} and L_{1}.
c. Determine the measure of the angle between L_{1} and L_{2}.
