Math SL PROBLEM SET 73

1. ($\mathbf{(6 . 2 - \mathbf { R }) (\mathbf { C I }) \text { The slope of the curve } y = x ^ { 2 } - 4 x + 6 \text { at the point } (3 , 3) \text { is equal to the slope of the }}$ curve $y=8 x-x^{2}$ at (a, b). Find the value of a and b.
(Cirrito 20.1, p643)
2. (SP5.4-R$)(\mathbf{C I})$ A survey is conducted with eight marathon runners. For each runner, x is the number of marathons the runner has completed, and y is the runner's personal best time for the marathon distance. Let r be the correlation coefficient.
(Oxford 10.4, p349)
a. Write down the possible minimum and maximum values of r.
b. Given that $r=-0.85$, which one of the diagrams below best represents the data?

c. For the data in diagram C , which two of the following phrases describe the correlation between x and y : perfect, zero, linear, strong positive, strong negative, weak positive, weak negative
3. ($\mathbf{C 6 . 5 - \mathbf { N }) (\mathbf { C I }) \text { Evaluate the following definite integrals. Use your TI-84 to graphically verify }}$ your result and include a diagram.
(Cirrito 22.4, p740)
a. $\int_{-2}^{1}\left(3 x^{2}-4 x^{3}\right) d x$
b. $\int_{1}^{5} \frac{5}{t^{2}} d t$
c. $\int_{0}^{\pi} \cos \left(\frac{1}{2} x\right) d x$
d. $\int_{1}^{3} \frac{a^{5}+2}{a^{2}} d a$
4. (V4.1-R) (CA) Triangle TRI is defined as follows:
$\overrightarrow{O T}=\binom{3}{-1} ; \overrightarrow{T R}=\binom{5}{6} ; \overrightarrow{T R} \cdot \overrightarrow{I R}=0 ; \overrightarrow{T I}=k j$
where k is a scalar and j is a unit vector in the \boldsymbol{y}-direction.
(Cirrito 12.3, p415)
a. Draw an accurate diagram of $\Delta T R I$.
b. Write the vector $\overrightarrow{I R}$.
c. Find the measure of angle RIT.

Math SL PROBLEM SET 73

5. (CA6.2-R) (CI) Determine the derivative of the following functions:
(Oxford 7.3, p208)
a. $y=x^{2} \sin (x)$
b. $y=x e^{2 x}$
c. $y=\sin (\cos (2 x))$
d. $y=e^{x} \ln \left(x^{2}\right)$
6. (V4.3-R)(CA) A line, L_{1}, goes through point P whose position vector is $\binom{2}{-3}$ and this line is parallel to the vector $3 \boldsymbol{i}+7 \boldsymbol{j}$. Find:
(Cirrito 12.7, p444)
a. the vector equation of this line;
b. the parametric equation of this line;
c. the Cartesian equation of this line;
d. the angle the line makes with the x-axis
7. $(\underline{\mathbf{C 6 . 6}-\mathbf{N}})(\mathbf{C I})$ If the velocity of a car is given by the function $v(t)=3 t^{2}-18 t+15$, where $t>0$ and is measured in seconds,
(Cirrito 22.6, p762)
a. determine when the car is not moving;
b. determine the acceleration function, $a(t)$, of the car and hence, when $a(t)=0$.
c. If the position of the car at $t=1$ was 3 (i.e $s(1)=3$), determine the position function, $s(t)$
d. Evaluate and interpret $\int_{0}^{2} v(t) d t$ as well as $\int_{0}^{2}|v(t)| d t$.
e. Determine the distance travelled and the displacement in the first 3 seconds of travel.
8. ($\mathbf{C 6 . 6 - \mathbf { N }) (\mathbf { C A }) \text { If the velocity of a car is given by the function } v (t) = - 1 + e ^ { \operatorname { s i n } (t) } \text { , where } 0 \leq t \leq 7 , ~ (t)}$ and is measured in seconds,
(Cirrito 22.6, p762)
a. determine when the car is not moving;
b. determine the acceleration function, $a(t)$, of the car and hence, when $a(t)=0$.
c. evaluate and interpret $\int_{1}^{5} v(t) d t$ as well as $\int_{1}^{5}|v(t)| d t$.
d. determine the distance travelled and the displacement in the first 7 seconds of travel.
