Math SL PROBLEM SET 70

1. (SP5.8-R) (CA) Apartments in my building are equipped with alarm systems to protect the apartments. The alarm system company says that their alarms are 96% reliable (that is, the alarm will trigger an alarm in 96% of all cases.) In my building, 10 apartments are equipped with these alarm systems.
(Cirrito 16.3.4, p544)
a. Find the probability that all the alarm systems work properly.
b. Find the probability that at least half of the alarm systems work properly.
c. Find the probability that at most 8 of the alarm systems work properly.

(Cirrito 5.3.5, p144)
a. Write down the equation of each of the asymptotes,
b. Determine the value of each of the intercepts,
c. Sketch the curve of f for $-3 \leq x \leq 5$, showing the asymptotes and intercepts.
2. (T3.6-R)(CA) Mr. S is about to go zip lining! He notices that the angle of depression of the zip line is 14°. If the starting platform is 100 m high and the finishing platform is on the ground,
(Cirrito 9.5, p290)
a. how long is the zip line?
b. how much "ground distance" is there between the starting platform and the finishing platform?
c. You had to make an assumption to answer $\mathrm{Q}(\mathrm{a})$ and $\mathrm{Q}(\mathrm{b})$. Now assume that this assumption was NOT true and the ground "sloped away" at an angle of 6°. Now re-determine the (i) length of the zip line and (ii) the ground distance between the two platforms.
3. (CA6.3-R) (CI) Find the exact coordinates of any stationary points and any inflection points for the curve $f(x)=x^{3}-2 x^{2}+x$. Classify any stationary points as maximum(s), minimum(s) or neither.
(Cirrito 19.2.1, p609)
4. ($\mathbf{(\mathbf { 2 } . 4 - \mathbf { R }) (\mathbf { C I }) \text { Given the function } f (x) = x ^ { 2 } - 2 x - 8 \text { , determine the: }}$
(Cirrito 2.4.2, p44)
a. values of $f(3)$ and $f(5)$,
b. Use the limit definition of a derivative (also expressed as using "first principles") to develop an equation for the derivative of $f(x)$.
c. average rate of change between $f(3)$ and $f(5)$,
d. vertex,
e. the zeroes,
f. the range, if the domain were $-4 \leq x \leq 5$.

Math SL PROBLEM SET 70

6. (C6.2-N) (CA) For the following functions,
a. use Symbolab to determine the derivatives of the following functions:
i. $\quad f(x)=4 x^{3} \sin (x)$
ii. $g(x)=e^{2 x} \cos (x)$
iii. $\mathrm{h}(\mathrm{x})=x^{3} \ln (x)$
b. Explain and/or generalize the rule for these derivatives.
7. (A1.2-R) (CI) The following questions review the rules for logarithms:
a. write each expression as the logarithm of a single quantity:
(Cirrito 7.4, p221)
i. $\quad \log (6)+\log (x)$ ii. $\ln (y)-\ln (4)$ iii. $\log _{3} M+\log _{3} N-2 \log _{3} P$ iv. $\log _{b} 12-\frac{1}{2} \log _{b} 9$
b. write each logarithmic expression as a sum, difference and/or multiple of simple logarithms:
i. $\quad \log _{2}(8 x)$
ii. $\ln \left(\frac{3}{y}\right)$
iii. $\log (\sqrt[3]{7})$
iv. $\log _{\mathrm{b}}\left(\frac{x^{3}}{y^{2}}\right)$
c. use Symbolab to simplify the following expressions. Comment on any generalizations that you may be observing.
(Cirrito 7.4, p225)
i.
(ii) $5^{\log _{5} x^{2}}$
(iii) $5^{3 \log _{5} x}$
(iv) $25^{\log _{5} x}$
ii. (i) $e^{\ln x}$
(ii) $e^{\ln 2 x}$
(iii) $e^{2 \ln x}$
(iv) $e^{x \ln a}$
8. (CA6.3-R) (CI) Find the exact coordinates of any stationary points and any inflection points for the curve $y=x e^{x}$. Classify any stationary points as maximum(s), minimum(s) or neither.
(Cirrito 19.2.1, p609)
