Math SL PROBLEM SET 66

1. (SP5.1, SP5.6-R) (CA) Consider the given cumulative frequency table:
(Oxford 8.3, p260)
a. Find the value of k.
b. Find the mean and the variance.
c. Determine $\mathrm{P}(x>8 \mid x>4)$.

x	frequency	cumulative frequency
2	4	4
4	6	10
6	k	20
8	9	29
10	7	36

2. (A1.3-R) (CA) The number of people participating in Maadi's annual Sum Fun Run has been monitored and it has been noticed that the number of participants has increased by 12.5% each year. In the first Sum Fun Run (held in 1990), forty people participated.
(Cirrito 8.2, p252)
a. Write down the number of people who participated in fun run in 1991.
b. Find the number of people that participated in the fun run in 2018.
c. In what year the total number of participants first exceed 15,000 ?
3. (CA6.5-N) (CI) Mr. S wants to calculate the area under the curve of the function $y=f(x)$ between $x=0$ and $x=4$ for the following functions. In each case, sketch the function, highlight the area and then determine the area.
(Cirrito 22.5, p748)
a. $f(x)=2$
b. $f(x)=x+2$
c. $f(x)=\sqrt{16-x^{2}}$
4. (CA6.3-E) (CA) Mr S takes a regular sheet of A4 paper (21 cm by 29.7 cm) and uses to construct an open top box (recall in IM3)
(Cirrito 21.4, p702)

a. He cuts out the four corners, each measuring 2 cm by 2 cm . Determine the length, width and height of the box and hence, its volume.
b. He cuts out the four corners, each measuring $x \mathrm{~cm}$ by $x \mathrm{~cm}$. Determine an expression in x for the length, width and height of the box and hence, an equation for its volume.
c. Determine the value for x that optimizes the volume of the box.

Math SL PROBLEM SET 66

5. (T3.6-R) (CA) Given the triangle $F G H$, where $F G=13, G H=10$ and angle $H F G=35^{\circ}$.
(Cirrito 9.5.2, p294)
a. Find the two possible values of angle $F H G$.
b. Hence, find angle $F G H$, given that it is acute.
6. (CA6.5-N) (CA) Mr. S wants to calculate the area under the curve of the function $y=x^{2}+1$ between $x=0$ and $x=4$. However, there seems to be a problem \qquad So, to help, I have included a diagram to help get started with an estimate. (link: https://www.desmos.com/calculator/c5seq91tar)
(Cirrito 22.5, p748)
a. Explain how the diagram is going to help us.
b. Use the diagram to help make an estimate to the area under the curve.

c. Is this estimate too high or too low?
d. How can I make the estimate more accurate?
7. (CA6.5-N) (CA) Mr. S wants to calculate the area under the curve of the function $y=x^{2}+1$ between $x=0$ and $x=4$. However, there seems to be a problem \qquad So, to help, I have included a diagram to help get started with an estimate.
(Cirrito 22.5, p748)
a. Explain how the diagram is going to help us.
b. Use the diagram to help make an estimate to the area under the curve.

c. Is this estimate too high or too low?
d. How can I make the estimate more accurate?
8. (A1.2 F2.7-R)(CA) For the function $g(x)=\log _{3} \frac{x}{2}+2 \log _{3} 4-\log _{3} 2$:, for $x>0$.
(Cirrito 7.4, p221; Cirrito 5.4, p148)
a. Show that equation for $g(x)$ can be simplified to $g(x)=\log _{3}(4 x)$.
b. The inverse of g can be written in the form of $g^{-1}(x)=a b^{x}$. Determine the values of a and the value of b.
c. Determine the solution(s) to the equation $\mathrm{g}^{-1}(x)=g(x)$.
