Math SL PROBLEM SET 61

- 1. (SP5.6 R) (CI) The diagram below shows the probability tree for events A and B, with P(A) = x.
 - a. Write down the value of *x*.
 - b. Find P(B).
 - c. Find P(A|B).
- (SP5.3 R) (CI) Last year's Math SL May exam was scored out of 100 and was written by 800 students in Egypt. The cumulative frequency graph is shown below.
 - a. Write down the median score.
 - b. Find the interquartile range.
 - c. Complete the frequency table.
 - d. Hence, show that the mean exam score is 61.25

Exam score (s)	Number of students
$0 \le s < 20$	50
$20 \leq s < 40$	
$40 \le s < 60$	200
$60 \le s < 80$	
$80 \le s < 100$	100

- 3. (A1.1 R) (CI) The first three terms of an infinite geometric sequence, A_n , are 81, 54 and 36.
 - a. Determine the value of *r*.
 - b. Find the value of the sixth term.
 - c. Find the sum to infinity for this sequence.

Math SL PROBLEM SET 61

4. (CA6.2, CA6.3 - R) (CI) Consider the function $y = \frac{x^2}{4} - \sqrt{x}$, x > 0.

- a. Find $\frac{dy}{dx}$.
- b. Point A is the minimum point on the graph of the function. Find the coordinates of A
- 5. (T3.3, 3.5 R) (CI) Given the equation $\cos(2x) \cos^2(x) 3\cos(x) = \sin^2(x)$, for $0 \le x \le 2\pi$.
 - a. Which identities could you use to solve this equation? Explain/justify your reasoning.
 - b. Hence, or otherwise, solve the equation $\cos(2x) \cos^2(x) 3\cos(x) = \sin^2(x)$

6. (V4.2, V4.3, V4.4 - R) (CI) A line, L_1 , passes through P(2,-1,0) and is parallel to

 $\vec{r} = \begin{pmatrix} 0\\2\\-5 \end{pmatrix} + t \begin{pmatrix} 1\\4\\2 \end{pmatrix}.$

- a. Write down a vector equation for L_1 , in the form of $r = a + \lambda b$.
- b. Find a unit vector that is parallel to L_1 .

A second line, L_2 , is represented by the vector equation $\vec{m} = \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} k \\ 1 \\ -1 \end{pmatrix}$.

- c. The line L_2 is perpendicular to L_1 . Show that k = -2.
- d. The lines L_1 and L_2 intersect at the point Q. Find the coordinates of Q

7. (F2.1, F2.2, F2.3, F2.6, CA6.2 - R) (CI) Let g be the function given by $g(x) = \ln(2x - 4)$.

- a. The function g was obtained by applying two transformations to $y = \ln(x)$.
 - i. What transformations were applied to $y = \ln(x)$?
 - ii. Hence, or otherwise, sketch $g(x) = \ln(2x 4)$, labelling any asymptote(s) and any *x* or *y*-intercepts.
- b. A line that is tangent to g at the point where x = 6 is drawn. Determine the equation of this tangent line.
- c. Determine the equation of $g^{-1}(x)$.