### Section FUN

- 1. (CI) Find the sum of the first 9 prime numbers.
- 2. (CI) How many pairs of prime numbers have a sum of 100?
- 3. (CI) Find the sum of the cubes of the first 4 natural numbers.
- 4. Where does Winnie the Pooh live?
- 5. (CI) Find the sum of the first ten odd numbers.
- 6. (CI) A Leyland number is a number of the form  $x^y + y^x$  where x and y are integers greater than 1. Show that 100 is a Leyland number. (evaluate this equation for x = 2 and y = 6)
- 7. What is a googolplex?
- 8. (CI) Find at least one way to put in some operations signs  $(+, -, \times, \div)$  to make these digits come to 100. 1 2 3 4 5 6 7 8 9 = 100
- 9. (CI) Using the number 4 only four times, create a mathematical statement whose value is 100. How about using the number 8 four times?
- 10. (CI) A frog is at the bottom of the well which is 100 meters deep. Everyday the frog jumps 5 meters upwards and fall 4 meters down. On which day the frog will reach the top?



- 11. (CI) I'm thinking of two positive whole numbers that multiply to 1000, neither of which contain the digit 0. What is the sum of these 2 numbers?
- 12. (CI) Which triangle has an area of  $100^{\circ}$ ?



13. (CI) Which pocket will the ball end up in?

14. (CI) Here is a grid of four "boxes". You must choose four **different** digits from 1–9 and put one in each box. For example:

This gives four two-digit numbers:

- 52 (reading along the 1st row)
- 19 (reading along the 2nd row)
- 51 (reading down the left hand column)
- 29 (reading down the right hand column)

In this case their sum is 151.

Try a few examples of your own.

Your challenge is to find four **different** digits that give four two-digit numbers which add to a total of 100.



A

 $\mathbf{C}$ 

| 5 | 2 |
|---|---|
| 1 | 9 |

#### Section A (Skills/Concepts Consolidation)

- 15. (CI) Find the sum of all multiples of 3 that are less than 100.
- 16. (CA) An infinite series,  $A_n$ , is given as  $A_n = 100 + 1 + \frac{1}{100} + \frac{1}{10000} + \dots$  A second infinite series,  $B_n$ , is given as  $B_n = 100 1 + \frac{1}{100} \frac{1}{10000} + \dots$  Determine  $\lim_{n \to \infty} (A_n B_n)$
- 17. (CI) For the quadratic equation  $C(x) = 100x^2 100x + 100$ ,
  - a. Determine the number of zeroes of C(x).
  - b. Determine the coordinates of the vertex of *C*.
  - c. Hence or otherwise, write the equation for  $y = C^{-1}(x)$ .
  - d. At what x-coordinate will the slope of C(x) be 100?
  - e. (CA) At what value for a will  $\int_{0}^{a} C(x)dx = 100$ ?

#### 18. (CI) The value of $sin(50^\circ) = W$ . Determine:

- a. (i) the value of  $sin(100^\circ)$  in terms of W
  - (ii) the value of  $cos(100^\circ)$  in terms of *W*.
- b. the solution to the equation sin(x) W = 0 on the domain of  $0 \le x \le 100 \pi$ .
- 19. (CA) Let  $\log_{c} 100 = K$  and let  $\log_{c} 200 = L$  and let  $\log_{c} 300 = M$ .
  - a. Show that  $\log_{c} 500 = \log_{c} 5 + 2 \log_{c} 10$ .
  - b.  $\log_{c} 500$  can also be written as  $A \log_{c} B + D \log_{c} 2$ . Find the values of A, B, and D.
  - c. Find a simplified expression in terms of K, L, and/or M for:
    - i.  $\log_c(1,800,000,000)$ ii.  $\log_c \sqrt[3]{\frac{2}{3}}$ .
- 20. (CA) Given that AB = 100 cm and that  $\angle BAC = 100^{\circ}$  as shown on the diagram, determine:
  - a. the area and perimeter of the shaded region.
  - b. how far from point C would you have to move (to get to point P) so that the shaded area has decreased by 1%.
- 21. (CA) Two adjacent sides of a triangle are  $\sqrt[4]{100}$  and  $\sqrt{100}$  and its area is  $\sqrt[3]{100}$ . Find the measure of the smallest angle in this triangle.





23. (CI) A graph of a sinusoidal function in the form of  $f(x) = A \sin(Bx) + C$  is given. Determine:



- a. the values of A, B and C.
- b. the equation of a cosine function that matches this function.
- c. the equation of the derivative of f(x).
- d. The equation of a line that is normal to f(x) at the point where x = 100.

e. The value of 
$$\int_{-100}^{} f(x) dx$$
.

f. The value of P such that 
$$\int_{0}^{1} f(x) dx = 100$$
.

24. (CI) Given the rational function  $h(x) = \frac{500x + 300}{100x - 200}$ ,

- a. Determine the equation(s) of the asymptotes of h(x)
- b. Determine the x- and y-intercept(s) if possible.
- c. Sketch h(x).
- d. Find the equation of  $h^{-1}(x)$
- e. Determine the equation of  $\frac{dh}{dx}$ .
- f. Show that  $h(x) = \frac{1300}{100x 200} + 5$  and hence find  $\int h(x) dx$ .