Math SL PROBLEM SET 100

Section FUN

1. (CI) Find the sum of the first 9 prime numbers.
2. (CI) How many pairs of prime numbers have a sum of 100 ?
3. (CI) Find the sum of the cubes of the first 4 natural numbers.
4. Where does Winnie the Pooh live?
5. (CI) Find the sum of the first ten odd numbers.
6. (CI) A Leyland number is a number of the form $x^{y}+y^{x}$ where x and y are integers greater than 1 . Show that 100 is a Leyland number. (evaluate this equation for $x=2$ and $y=6$)
7. What is a googolplex?
8. (CI) Find at least one way to put in some operations signs $(+,-, \times, \div)$ to make these digits come to $100 . \quad 1 \quad \mathbf{1} \quad \mathbf{2}$
9. (CI) Using the number 4 only four times, create a mathematical statement whose value is 100 . How about using the number 8 four times?
10. (CI) A frog is at the bottom of the well which is 100 meters deep. Everyday the frog jumps 5 meters upwards and fall 4 meters down. On which day the frog will reach the top?

Math SL PROBLEM SET 100

11. (CI) I'm thinking of two positive whole numbers that multiply to 1000 , neither of which contain the digit 0 . What is the sum of these 2 numbers?
12. (CI) Which triangle has an area of 100° ?

13. (CI) Which pocket will the ball end up in?

14. (CI) Here is a grid of four "boxes". You must choose four different digits from 1-9 and put one in each box. For example:

This gives four two-digit numbers:

52 (reading along the 1 st row)
19 (reading along the 2 nd row)
51 (reading down the left hand column)
29 (reading down the right hand column)

In this case their sum is 151 .

Try a few examples of your own.

Your challenge is to find four different digits that give four two-digit numbers which add to a total of 100 .

5	2
1	9

Math SL PROBLEM SET 100

Section A (Skills/Concepts Consolidation)

15. (CI) Find the sum of all multiples of 3 that are less than 100.
16. (CA) An infinite series, A_{n}, is given as $A_{n}=100+1+\frac{1}{100}+\frac{1}{10000}+\ldots$. A second infinite series, B_{n}, is given as $B_{n}=100-1+\frac{1}{100}-\frac{1}{10000}+\ldots$. Determine $\lim _{n \rightarrow \infty}\left(A_{n}-B_{n}\right)$
17. (CI) For the quadratic equation $C(x)=100 x^{2}-100 x+100$,
a. Determine the number of zeroes of $C(x)$.
b. Determine the coordinates of the vertex of C.
c. Hence or otherwise, write the equation for $\mathrm{y}=C^{-1}(x)$.
d. At what x-coordinate will the slope of $C(x)$ be 100 ?
e. (CA) At what value for a will $\int_{0}^{q} C(x) d x=100$?
18. (CI) The value of $\sin \left(50^{\circ}\right)=W$. Determine:
a. (i) the value of $\sin \left(100^{\circ}\right)$ in terms of W
(ii) the value of $\cos \left(100^{\circ}\right)$ in terms of W.
b. the solution to the equation $\sin (x)-W=0$ on the domain of $0 \leq x \leq 100 \pi$.
19. (CA) Let $\log _{c} 100=K$ and let $\log _{c} 200=L$ and let $\log _{c} 300=M$.
a. Show that $\log _{c} 500=\log _{c} 5+2 \log _{c} 10$.
b. $\log _{c} 500$ can also be written as $A \log _{c} B+D \log _{c} 2$. Find the values of A, B, and D.
c. Find a simplified expression in terms of K, L, and/or M for:
i. $\quad \log _{c}(1,800,000,000)$
ii. $\quad \log _{c} \sqrt[3]{\frac{2}{3}}$.
20. (CA) Given that $\mathrm{AB}=100 \mathrm{~cm}$ and that $\angle \mathrm{BAC}=100^{\circ}$ as shown on the diagram, determine:
a. the area and perimeter of the shaded region.
b. how far from point C would you have to move (to get to point P) so that the shaded area has decreased by 1%.

21. (CA) Two adjacent sides of a triangle are $\sqrt[4]{100}$ and $\sqrt{100}$ and its area is $\sqrt[3]{100}$. Find the measure of the smallest angle in this triangle.
22. (CI) Determine the value(s) for K such that the parabola $f(x)=100 x^{2}+300 x+100$ and the line $g(x)=100 x-100 K$ have no solutions.

Math SL PROBLEM SET 100

23. (CI) A graph of a sinusoidal function in the form of $f(x)=\mathrm{A} \sin (\mathrm{B} x)+\mathrm{C}$ is given. Determine:

a. the values of A, B and C .
b. the equation of a cosine function that matches this function.
c. the equation of the derivative of $f(x)$.
d. The equation of a line that is normal to $f(x)$ at the point where $x=100$.
e. The value of $\int_{-100}^{100} f(x) d x$.
f. The value of P such that $\int_{0}^{P} f(x) d x=100$.
24. (CI) Given the rational function $h(x)=\frac{500 x+300}{100 x-200}$,
a. Determine the equation(s) of the asymptotes of $h(x)$
b. Determine the x - and y-intercept(s) if possible.
c. Sketch $h(x)$.
d. Find the equation of $h^{-1}(x)$
e. Determine the equation of $\frac{d h}{d x}$.
f. Show that $h(x)=\frac{1300}{100 x-200}+5$ and hence find $\int h(x) d x$.
