IM2 Problem Set 2.2 - Working with Sides and Angles in Triangles

BIG PICTURE of this UNIT:	• How do I determine the measure of angles in geometric shapes, without direct measurement?
	How do I solve for sides or angles in right triangles?How can I solve problems that require geometric models using right triangles??

Part 1 - Skills Review

- 1. CONCEPT REVIEW #1: When we use the **tan function** on the calculator,
 - a. What does the INPUT represent?
 - b. What does the OUTPUT represent?
- 2. CONCEPT REVIEW #2: When we use the **tan**⁻¹ **function** on the calculator,
 - a. What does the INPUT represent?
 - b. What does the OUTPUT represent?
- 3. Determine the angle that the line $y = \frac{2}{3}x + 1$ makes with the *x*-axis.
- 4. Determine the angle that the line 6x + 2y = 8 makes with the *x*-axis.
- 5. Mr. S. drew a line that rises at an angle of 56.3° and goes through the point (5,-2). Write the equation of this line in point-slope form as well as standard form.

Part 2 - Concept EXTENSION: Lines to Triangles

Here are three diagrams. The line on the first diagram has the equation $y = \sqrt[3]{4x} + 3$.

How are the diagrams the same? How are the diagrams different?

Part 3 - The Tangent Ratio in Triangles

1. Use the Tangent Ratio and Pythagorean Theorem to find the missing side and hypotenuse.

2. Use the Tangent Ratio to find the missing angle θ and hypotenuse of each.

3. State the slope ratio for the following triangles and then find the measure of the angle as well.

- 4. What is the measure of an angle that is complementary to:
 - 11° a.
 - b. 22°
 - c. 45°
 - d. 70°
- 5. Draw a triangle with a slope ratio of:
 - 521 52 7 a. b.
 - c.
- 6. Now, find the angle of a line that has a slope ratio of
 - a.
 - b.
 - 5 2 1 5 2 7 c.
- 7. You now know everything you need to know in order to find all missing information about a right triangle. Use this knowledge to solve for all of the missing parts of each triangle

