A. Lesson Context

BIG PICTURE of this UNIT:	 How do we measure "change" in a function or function model? How do we analytically analyze a function or function model – beyond a simple preCalculus & visual/graphic level? ? 		
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading
	We understand how to	How do we differentiate and	Working with more
	differentiate and work	work with functions that arise	complicated functions that
	with polynomial ,	from a product or quotient of	are variations of polynomials,
	sinusoidal, exponential &	two other functions?	sinusoidal and exp/log
	log functions		

B. Lesson Objectives

- 1. Find out how to take the derivative of a product of functions.
- 2. Find out how to take the derivative of a quotient of functions.
- 3. Use these differentiation methods to apply calculus skills (tangents/normals & curve sketching) to simple problems in curve sketching

C. Skill Development - Derivatives of a Product of Functions

Now, let's use desmos.com & wolframalpha.com to develop an understanding of the derivative of a product of 2 functions.

Examples to use >

- 1. Use $y = x \sin(x)$ which is a "new" function, made by taking the product of two functions (namely f(x) = xand $g(x) = \sin(x)$, such that $y = f(x) \times g(x) = x \sin(x)$
 - (a) So let's start with a prediction \rightarrow what do we predict the derivative of $y = x \sin(x)$ to be? Use desmos to graph $v = x \sin(x)$ and its derivative as well as your proposed derivative. Make observation.
 - (b) Now use wolframalpha and ask wolframalpha to give us the derivative of $y = x \sin(x) \rightarrow \infty$ now how do we understand HOW that derivative came about?
- 2. So, now make a prediction for the derivative of $y = x^2 e^x$. Use wolframalpha to confirm your prediction.

D. Skill Development - Derivatives of a Quotient of Functions

Now, let's use desmos.com & wolframalpha.com to develop an understanding of the derivative of a product of 2 functions.

Examples to use >

- 1. Use $y = \frac{e^x}{x+1}$ which is a "new" function, made by taking the quotient of two functions (namely $f(x) = e^x$ and g(x) = x + 1, such that $y = \frac{f(x)}{g(x)} = \frac{e^x}{x + 1}$
 - (a) So let's start with a prediction \Rightarrow what do we predict the derivative of $y = \frac{e^x}{x+1}$ to be? Use desmos to graph $y = \frac{e^x}{x + 1}$ and its derivative as well as your proposed derivative. Make observation.
 - (b) Now use wolframalpha and ask wolframalpha to give us the derivative of $y = \frac{e^x}{x+1}$ \rightarrow now how do we understand HOW that derivative came about?
- 2. So, now make a prediction for the derivative of $y = \frac{\cos(x)}{x^2 + 1}$. Use wolframalpha to confirm your prediction.

E. Skill Development - Differentiation Techniques: Summary

Rule	"formula"
December 1991	
Product Rule	
Quotient Rule	

F. Problem 2 – Applying Calculus: Working with Rates of Change & Tangents & Normals

- 1. Given the function $f(x) = (3x+1)\ln(x)$, determine:
 - i. The equation of the derivative
 - ii. The exact value of the instantaneous rate of change at x = e.
- 2. Find the equation of the derivative of the following functions:

i.
$$h(x) = \frac{\sin(x)}{x^3 - 2}$$

ii.
$$f(x) = \frac{5x+3}{x^2+1}$$

iii.
$$b(x) = \sqrt{x} \left(4x^2 - 2x \right)$$

iv.
$$a(x) = \frac{3x^2 + 2x + 1}{x^3}$$

- 3. (CI) Determine the equation of the line tangent to $y = x^3 \ln(x)$ at x = 1.
- 4. Find $\frac{dy}{dx}$ for $y = \frac{x^2 1}{2x^2 + 1}$. Determine the values of x for which $\frac{dy}{dx} > 0$.
- 5. (CI) Determine the equation of the tangent to $y = (2x^3 4x + 2)(x^2 3x + 1)$ at the point (2,-10).
- 6. (CI) Find the point(s) where the tangent line to the curve of $f(x) = \frac{x^2 2x + 4}{x^2 + 4}$ is horizontal.
- 7. Find the minimal value of $g(x) = \frac{e^x}{x}$; x > 0.

8. (CI) For the curve defined by
$$g(x) = e^{-x}\cos(x)$$
 on the domain of $\left[0, \frac{5\pi}{2}\right]$, determine:

- i. the x- and y-intercept(s);
- ii. the first two stationary points;
- iii. the "nature" of these stationary points (max/min/neither);
- iv. hence, sketch the function $g(x) = e^{-x} \cos(x)$.

9. **(CI)** For the curve of
$$g(x) = e^x \sin(x)$$
,

- i. Find the equations of g'(x) and g''(x).
- ii. Find the values of x for which g'(x) = 0 and g''(x) = 0.
- iii. Given your work in Qi. and Qii., determine the intervals of increase and decrease and classify the extrema.
- iv. Sketch the function, given your work in Qiii.

10. (CI) Given the function
$$g(x) = xe^x - e^x$$
,

- i. Evaluate the exact values of: (a) g(1)(b) g(0)
- ii. Show that $\frac{d}{dx}g(x) = e^x + g(x)$.
- iii. Determine the intervals of increase/decrease of y = g(x).
- iv. Show that y = g(x) has an inflection point at x = -1
- v. Determine the interval in which y = g(x) is concave up.
- vi. Determine the equation of the tangent to the curve at x = 1.

11. Given the function
$$y = \frac{x}{3 - 2x}$$
;

- i. Determine the equation of the aymptotes of this rational function.
- ii. Hence or otherwise, evaluate $\lim_{x \to -\infty} \frac{x}{3-2x}$
- iii. Determine the x- and y-intercepts.
- iv. Find the equation of the line that is normal to the curve $y = \frac{x}{3-2x}$ at the point where x = 1.