Three parabolas lie in the Cartesian plane, P₁, P₂, and P₃. The equations for the parabolas are as

$$P_1: f(x) = 2x^2 - 4x - 1$$

follows: P_2 : $g(x) = 3x^2 - 18x + 30$, where the values of A, B, and C in Parabola 3 will be determined.

$$P_3: h(x) = Ax^2 + Bx + C$$

- 1. For Parabola 1, P_1 , determine the location of the vertex.
- 2. **Hence, or otherwise**, write the equation for P_1 in vertex form $(f(x)=a(x-h)^2+k)$.
- 3. State the interval of the domain in which f(x) is described as being an **increasing function**.
- 4. Algebraically, determine the roots (zeroes or x-intercepts) of y = f(x). Verify with technology.
- 5. **Hence**, write the equation for P_1 in factored form, in both approximate form (3 sds) and exact form.
- 6. Graph the parabola on the TI-84 & DESMOS. **Sketch** this parabola into your notes, labeling key points.
- 7. For Parabola 2, P₂, determine the location of the vertex.
- 8. **Hence, or otherwise**, write the equation for P_2 in vertex form $(g(x)=a(x-h)^2+k)$.
- 9. This parabola has been transformed from the original parent function, $y = x^2$. Describe the transformations that were applied, given your work from Q8.
- 10. This parabola, P₂ will now be inverted.
 - a. Explain what an "inverse" is.
 - b. Will the inverted parabola represent a function? Why or why not?
 - c. Determine an equation of the inverted parabola.
 - d. Determine an equation of the inverted parabola such that it is a function.
 - e. Compose the inverse function with the original function, $g \circ g^{-1}(x)$. What **should** happen? Why?
- 11. Is there a location or interval in which g(x) neither increases or decreases?
- 12. Graph the parabola on the TI-84 & DESMOS. **Sketch** this parabola into your notes, labeling key points.

You will now determine the equation of the third parabola, P₃, given the information provided.

- 13. Write the vertices of P_1 and P_2 .
- 14. The three vertices of the parabolas all lie on the exponential function, $m(x) = K + L^x$, where K and L are constants that you need to determine. Given the location of the first two vertices of P_1 and P_2 , determine the values of K and L and hence determine the vertex of P_3 (given that the x co-ordinates of the vertices are in an **arithmetic** progression.)
- 15. Write the values of the leading coefficients of P_1 and P_2 (call them a_1 and a_2). The value of the leading coefficient of P_3 can be determined as follows: The values of a_1 , a_2 and a_3 represent three terms of a geometric sequence. Hence, determine the value of a_3 .
- 16. Write the equation of P₃ in standard form.

You will now draw a line segment connecting the two vertices of the first two parabolas, P_1 and P_2 . Call this line segment $\overline{V_1V_2}$.

- 17. Explain what the idea of being **tangent to a function** means. Is the line containing the segment $\overline{V_1V_2}$ **tangent to** the parabola P_2 at V_2 ? Are there lines that can be tangent to P_2 at this point (V_2) ?
- 18. Determine the distance between the two vertices.
- 19. Hence or otherwise, determine the equation of the circle, wherein V_1 and V_2 are the endpoints of a diameter.
- 20. Determine the equation of the perpendicular bisector of $\overline{V_1V_2}$ (the line segment between the two vertices.)
- 21. Determine the angle of $\overline{V_1V_2}$.