AP Calculus AB

Rectilinear and Projectile Motion Worksheet #2

- 1. The position of a skateboarder at any time t (in seconds) is given by the function $s(t) = t^3 8t^2 + 8t$ measured in feet.
 - a) What are the velocity and acceleration functions in terms of t?
 - b) When is the skateboarder at rest?
 - c) What is the position(s) of the skateboarder when at rest?
 - d) What are the position, velocity, and acceleration of the skateboarder at three seconds and at 5 seconds?
 - e) Sketch a motion schematics for the skateboarder. Make sure to label position and velocity at each critical time.
 - f) What was the total distance traveled in the first five seconds?
 - g) Find the displacement in the first 5 seconds.
 - h) When is the skateboarder moving to the right and left? Use interval notation for your answers.
- a) v(t) = 312-16+8 alt) = () t - 16
- b) 0 = 3t2-16t+8 t= .558 sec t> 4.775 sec
- c) S(.558) = 2.147 ft. 5(4.775) = -35.332 ft.
- d) S(3) = -21 ft S(5) = -35 ftv(3) = -13 ft/sec v(5) = 3 ft/sec

 - a(3) = 2 ft/sec2 a(5) = 14 ft/sec2

- 12.147 + -37.479 (332 = 39.958 ft.
- 9) 5(5) 5(0)-35 - 0 = -35 ft. 35 ft to the left
- h) left: (,558, 4.775) right: [0, .558) U (4.775, ∞)

- 2. The position of a particle at any time t (in seconds) is given by the function $s(t) = 2t^3 27t + 15$ measured in feet.
 - a) What are the velocity and acceleration equation in terms of t?
 - b) When is the particle at rest?
 - c) What is the position(s) of the particle when it is at rest?
 - d) What are the initial position, velocity, and acceleration of the particle?
 - e) Sketch a motion schematics for the skateboarder. Make sure to label position and velocity at each critical time.
 - f) What is the total distance traveled from one second to six seconds?
 - g) What is the displacement for the same time frame?
 - h) When is the particle moving to the left and right? Use interval notation for your answers.

(a)
$$v(t) = (vt^2 - 27)$$

 $a(t) = 12t$

b)
$$0 = (pt^2 - 37)$$

 $37 - 6t^2$
 $1t^2 - 14.5$
 $t = 2.121$ Sec

d)
$$s(0) = 15$$
 ft.
 $v(0) = -27$ ft/sec.
 $a(0) = 0$ ft/sec.

- 3. A particle is moving with its position defined by $s(t) = t^3 6t^2 + 9t + 5$ where t is in seconds and s is in feet.
 - a) What are the particle's velocity and acceleration functions?
 - b) Find the displacement and the total distance traveled by the particle in the first four seconds.
 - c) What is the velocity of the particle when its position is 8 feet?
 - d) Sketch a motion schematic labeling position, velocity, and acceleration at the beginning, end, and at each change.

(a)
$$v(t) = 3t^2 - 12t + 9$$

 $\alpha(t) = 6t - 12$

b)
$$0 = 3t^{2} \cdot 12t + 9$$

 $0 = 3(t^{2} \cdot 4t + 3)$
 $0 = 3(t^{-3})(t - 1)$
 $t = 3$ $t = 1$
 $s = 5$ $s = 9$
 0 1 3 4
 $19 - 5 | + |5 - 9| + |9 - 5|$
 $4 + 4 + 4 = 12f$
 $5 + 5 + 16 = 12f$
 $5 + 16 = 12f$

- 4. An object has its position defined by $s(t) = t^3 9t^2 + 24t + 20$ in feet.
 - a) What are the velocity and acceleration functions?
 - b) What are the position and velocity of the object when its acceleration is $-6.5 \, ft / \sec^2$?
 - c) Find the displacement and the total distance traveled by the particle from t = 1.5 seconds to t = 7seconds.

a)
$$v(t) = 3t^2 - 18t + 24$$

 $a(t) = 6t - 18$

$$t=1.917 \, \text{sec}$$
 chisplacement:
 $s(1.917)=39.979$ $v(1.917)=.519 \, \text{filter}$ $S(7)-S(1.5)$
 $0=3t^2-18t+24$ $90-39.125$
 $0=3(t^2-6t+8)$
 $0=3(t-4) + 2$

displacement: 90-39.125 = 50.875 ft.