Chapter Self-Test

Process Checklist

- Question 2: Did you connect the information about each parabola to the appropriate form of the relation?
- Question 4: Did you apply reasoning skills as you developed a possible equation for the graph?
- Questions 5 and 6: Did you reflect on your thinking to assess the appropriateness of your strategies as you solved the problems?
- Question 6: Did you relate the numeric, algebraic, graphical, and verbal representations of the situation?

- a) The black graph at the left resulted from transforming the green graph of y = x². Determine the equation of the black graph. Explain your reasoning.
 - **b**) State the transformations that were applied to the graph of $y = x^2$ to result in the black graph.
- 2. Determine the equation of each quadratic relation in vertex form.
 - **a**) vertex at (7, 5), opens downward, vertical stretch of 4
 - **b)** zeros at 1 and 5, minimum value of -12, passes through (6, 15)
- 3. Sketch each quadratic relation by applying the correct sequence of transformations to the graph of y = x².
 a) y = -2(x 3)² + 8
 b) y = 0.5(x + 2)² 5
- **4.** The parabola $y = x^2$ is compressed vertically and translated down and right. The point (4, -10) is on the new graph. What is a possible equation for the new graph?
- 5. Accountants for the HiTech Shoe Company have determined that the quadratic relation $P = -2x^2 + 24x 54$ models the company's profit for the next quarter. In this relation, *P* represents the profit (in \$100 000s) and *x* represents the number of pairs of shoes sold (in 100 000s).
 - **a)** Express the equation in factored form.
 - **b)** What are the zeros of the relation? What do they represent in this context?
 - c) Determine the number of pairs of shoes that the company must sell to maximize its profit. How much would the maximum profit be?
- 6. A toy rocket that is sitting on a tower is launched vertically upward. The table shows the height, *h*, of the rocket in centimetres at *t* seconds after its launch.

t (s)	0	1	2	3	4	5	6	7
<i>h</i> (cm)	88	107	116	115	104	83	52	11

- **a)** Using a graphing calculator, create a scatter plot to display the data.
- **b)** Estimate the vertex of your model. Then write the equation of the model in vertex form and standard form.
- c) Use the regression feature on the graphing calculator to create a quadratic model for the data. Compare this model with the model you created for part b).
- **d)** What is the maximum height of the rocket? When does the rocket reach this maximum height?
- e) When will the rocket hit the ground?