CHAPTER 20. SPECIAL FUNCTIONS

Problem 20.5: Find all solutions to the equation V2x + 10— V7 —x = V2x—2.

Solution for Problem 20.5: We start by squaring to get rid of some of the radicals. On the left side we
have

(Vx+10-V7—=) :(\/2x+10)2—2\/2x+10\/7—x+(\/7—x)2‘
=2x+10-2/2x + 10)(7—2) + 7 - x

=17 +x —2V-2x2 + 4x + 70.
2
On the right we simply have (\/2x - 2) = 2x — 2, so our equation now is
17 +x = 2V-2x2 + 4x + 70 = 2x — 2.

Now we can isolate the radical, which gives

2V=-2x2+4x+70 =19 —x.

Squaring this equation gives us 4(—2x> + 4x + 70) = (19 — x)%. Expanding both sides then gives us the
equation —8x? + 16x + 280 = 361 — 38x + x2, and rearranging this results in

9x% — 54x + 81 = 0.

Dividing this equation by 9 gives us x> — 6x + 9 = 0. Factoring gives (x — 3)*> = 0, so our only possible
solution is x = 3. Substituting x = 3 into the original equation gives us 4 — 2 = 2. Therefore, the only
solution to the original equationis x = 3. O

20.1.1 What are the domain and range of each of the following functions?
(@) fx)=v2+x-5 (b) s(¥)=-2V3-x+7

20.1.2 Find all solutions to the equation V1+8r—v2 =4,

2013 1fx> 0, then simplify _ |- ~—. (Source: AMC 12)
\/ =

20.1.4 Graph the equation y = — Vx — 2.

20.1.5 If 4/2 + vx = 3, then what is x? (Source: AHSME)

20.L.6% Solve the equation vx + Vx +4 = 2V4x - 5.

20.2 Absolute Value

The absolute value of a number can be thought of as its distance from 0 on the number line. For example,
15| = 5, because 5 is 5 units from 0 on the number line. The number -5 is also 5 units away from 0 on the
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20.2. ABSOLUTE VALUE

number line, so |[-5] = 5, as well.

We can also use absolute value to express the distance between two different numbers on the number
line. Specifically, the expression |x — y| equals the distance between x and y on the number line. For
example, we have |6 — (-3)] = 9 because 6 and —3 are 9 apart on the number line.

»(a)-~. For what values of x is 2x + 5 nonnegatlve'? 'What llnear expressmn does |
these Values of X2

v(a) What linear expressmn does f (x): equal 1f x>3?7

- (b) If-2 < <3, then how can we wr1te |x 3] w1thout absolute Value 51gﬁs7 How can we wrlte
lx + 2| W1thout absolute Value signs? How can we write f(x) when x isin thls range” ‘

: | (c) What linear expressmn does flx) equal ifx < ——27 ’
| (d) Graphy = f(x). e |
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CHAPTER 20. SPECIAL FUNCTIONS

Problem 20.6:
Gy If x 2 0, then must lx| equal x? Why or why not?

(b) If x < 0, then must |x| equal =x?: Why or why not7 o

(c) Graph the equahon y

Solution for Problem 20.6:

(@) When x is nonnegative, the absolute value of x is just x, since x is x units from 0 on the number
line.

(b) When x is negative, we can't say that |x| = x, because distance must be positive. If x is negative,
then it is a distance of —x from 0. So, if x is negative, then |x| = - '

(c) When x is positive, f(x) = |x| is exactly the same as f (x) = x. When it Y
is negative, f(x) = |x| is exactly the same as f(x) =

We're ready to graph y = |x|. For nonnegative x (to the right of the
y-axis), we graph y = x, and for negative x (to the left of the y-axis)
we graph y = —x. The resulting graph is shown at right.

[ )
v

Our graph of y = |x| reinforces a very important property of absolute value:

Now that we can graph y = |x], let’s try graphing a more complicated equation involving absolute
value.

Problem 20.7: Graph the equation y

Solution for Problem 20.7: We graphed y = |x| by considering the cases x > 0 and x < 0. These cases
allowed us to get rid of the absolute value symbol, since |x| = x when x > 0 and |x| = —x when x <0. We
try the same thing here.

First, we have to determine what our cases are. The absolute value of a nonnegative number is
the number itself, so one case is when the expression inside the absolute value symbol in the equation
= |2x + 5| — 3 is nonnegative. So, for this case we have 2x +5 > 0. On the other hand, the absolute
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20.2. ABSOLUTE VALUE

value of a negative number is the opposite of the number. Therefore, our other case is when 2x + 5 js
negative. Now, we're ready to consider our two cases:

e Case1: 2x + 5 is nonnegative. When 2x + 5 2"0, we have x > -5/2. We also have |2x + 5| = 2x + 5
when 2x +5 > 0, so our equation becomes y = 2x +5-3 = 2y 4.2, So, when x > —5/2, the equation
Y = [2x + 5] — 3 is the same as the equation y = 2x + 2,

e Case2: 2x+5is negative. When 2x+5 < 0, wehavex < ~5/2. Wealso have [2x+5| = —(2x+5) = —2x-5
when 2x + 5 < 0, so our equation in this case becomes Y=12x+51-3=-2x-5-3 = —pyp_ 8.
Therefore, when x < —5/2 the equation y = [2x + 5| - 3 is the same as the equation y = —2x — 8,

Putting;' fhese two cases together, we have the graph shown at right. o y‘ ;
For x > -5/2, our graph is the same as the graph of y = 2x + 2, as e
determined above. For x < =5/2, our graph is the same as the graph of
y=-2x-8.

The graph of a function that consists of the absolute value of a linear
expression, such as f(x) = x| or g(x) = |2x - 5|, always has a V-shape like
the one shown at right. Notice also that the slopes of the two branches of
the Vaare 2 and ~2. Our casework above shows why the absolute values
of the slopes of our two branches must equal the coefficient of x in y=2x+5-3. 0

P P e S S
I
I

mportant-:- , Whengver- youseea V%shaped;.gfgi;h‘ (oran upsviaz—a(;;r;\‘/),*you shoui:i
| @ think ofabsolute value. LR e
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Solution for Problem 20.8: We present several solutions.

Solution 1: What can [2x —9| equdl? f2x~9| =5, then 2x — 9 must be either 5 or —5, because 5 and -5
are the only numbers that have absolute value equalto5. If 2x — 9 = S5thenx=7 If2x -9 = -5, then
X = 2. So, our solutions are x = 2 andx =7,

While this approach is éasy for a simple equations like [2x - 9] = 5, we will soon see more complex
absolute value equations for which this approach won’t work. For these more complicated problems,
we can often use one of the following methods:

Solution 2: Casework. We don’t know how to solve equations with absolute value signs, so we want
to get rid of them. We know that when 2x — 9 is nonnegative, then [2x — 9 = 2x ~9. When 2x -9 is
negative, then [2x — 9] = —(2x — 9). Make sure you see why! We must therefore consider two cases:

o Case1: 2x —9 > 0. This occurs when x > 4.5. When 2x — 9 >0, our équation i82x-9=5,50x=7.
Because 7 is greater than 4.5, our solution x = 7 satisfies the restrictions on x for this case.

e Case 2: 2x — 9 < 0. This occurs when x < 4.5. When 2x — 9 < 0, we have [2x — 9] = ~-(2x - 9), so
our equation is —(2x — 9) = 5. The solution to this equation is x = 2. Because x = 2 satisfies the
inequality 2x - 9 < 0, it satisfies the restrictions for this case. So, it is a valid solution.
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CHAPTER 20. SPECIAL FUNCTIONS

Combining our two cases, we have x = 2 and x = 7 as our solutions.

Concept:  We can often handle problems involving the absolute value of an expres—
' = . -sion by c0n51dermg cases corresponding to variable values that make the
V expressmn negative or nonnegatlve : s

Solution 3: What else must always be positive? Justlike absolute value, squares must always be positive.
So, in an expression like [x2| or |x|?, the absolute value signs are redundant. We can write each as simply
x2. This gives us the idea of squaring the given equation:

2x — 9] = 5%,
The absolute value sign is now redundant, so we have (2x — 9)2 52, Wthh rearranges as
4x* — 36x + 56 = 0.

Dividihg by 4, then factoring, gives (x — 2)(x — 7) = 0, so our potential solutions are x = 2 and x = 7.
Because we squared the equation as a step, we go back and check for extraneous solutions. We find that
both solutions are valid.

Solution 4: Use the number line. Because [2x — 9] = 5, we know that 2x is 5 units from 9 on the number
line. There are two numbers that are 5 units from 9 on the number line, 9—5 = 4 and 9+ 5 = 14.
Therefore, 2x must equal 4 or 14. Solving 2x = 4 gives x = 2 and solving 2x = 14 gives x = 7.

See if you can also solve the problem by graphing the function y = |[2x — 9|. O

What if we have two absolute value expressions in a function?

Problem 20.9: Let f(x) = |[r—3| +[x +2]. Graph y = f(x).

Solution for Problem 20.9: We graphed y = |x| by considering separately the cases where the expression
inside the absolute value is negative and where it is nonnegative. We try the same here. We have three
cases to consider based on whether x — 3 and x + 2 are both positive, both negative, or one is positive
and the other negative. We find the boundaries for the cases by locating values of x for whichx -3 =0
orx+2=0. Thesearex =3 and x = -2.

e Case1: Bothx — 3 and x + 2 are nonnegative. This occurs when x > 3. Here, we have
f@)=lx-3l+|x+2[=x-3+x+2=2x-1.

Another way to look at this is to think of |x — 3| as the distance between x and 3 on the number
line, and to think Qf [x + 2| = [x — (—2)| as the distance between x and —2 on the number line. When
x = 3, xis x — 3 more than 3 and x — (-2) = x + 2 more than —2. So, the sum of the distances from x
to3 and to -2 is (x — 3) + (x + 2) = 2x — 1. Therefore, if x > 3, wehave [x - 3| +|x + 2| =2x -1, as
before.

o Case 2: Exactly one of x — 3 and x + 2 is negative. This occurs when —2 < x < 3. (Make sure you see
why.) In this range, x — 3 is negative but x + 2 is not, so

fX)=lx-3|+x+2=-(x~-3)+x+2=5.
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20.2. ABSOLUTE VALUE

Once again, we can turn to the number line to see why |x = 3| + |x + 2] =5when -2 < x < 3. When
x is between —2 and 3, the sum of the distances from x to —2 and to 3 simply equals the distance
from -2 to 3, which is 5. Therefore, if -2 < x < 3, we have |x - 3| + [x+ 2| =5,

o Case 3: Bothx — 3 and x + 2 are negative. This occurs when x < -2, Here, we have
fE) =k -3[+]x+2 = ~(x=3)-(x+2) = -2xr+1.

As with the first two cases, we could also have used the number line in this case.

We graph y = f(x) = |x - 3+ |[x + 2| by graphing each of these pieces. E oy

Forx > 3, we graphy =2x~1, For -2 < x < 3, we graph y = 5. And for

X < -2, we graph y = ~2x + 1. The result is shown at right.

One bit of interesting information we can read from our graph is that

the smallest possible value of f(x) is 5. This is not immediately obvious

from looking at the equation f(x) = |x - 3] + x+2]. O

e

!

We can graph functions with two ab

solute value expressions, but how about solv

ing equations with

two absolute value expressions?

Solution for Problem 20.10: We might try isolating an absolute value expression and squaring, but
that’s going to get nasty in a hurry. Instead, we use intervals, because they worked when graphing

® Case1: x > 2. This makes x + 3 nonnegative and 2 — 5x negative, so our equation is
X+3+[-(2-5x)]=7.
The solution to this'equation is x = 1, which satisfies x > Z. So, it meets the restriction of this case.
® Case2: -3<x< 2. This makeé both x +3 and 2 — 5x nonnegative, so our equation is
X+3+2-5x=7,
which gives us x = —%. This meets the restrictions of this case, so it is a valid solution.
® Case 3: x < =3. This makes x + 3 negative and 2 — 5y nonnegative, so our equation is
—(x+3)+2~-5x = 7,

which gives x = ~3. This value does not meet the restriction of this case because —% is not less than
—3. Therefore, we cannot conclude that x = £ is a valid solution to the original equation. (Plug
x = —% into the original equation and see what happens!)

Combining all three cases givesusx = land x = ~1 as our solutions.
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CHAPTER 20. SPECIAL FUNCTIONS

WARNING!! When you use casework to’solve an absolute" value equation, you
< ' are among the
_test that you 've.

: ,quanon

O

We've graphed functions that are absolute values of expressions, but what if x and y are both inside
absolute value signs?

1Pr0blem 20.11' Graph the equation |x + ;1,|.,¥i- ly: ZI_‘:_:"S. e

Solution féir Problem 20.11: Casework has served us well so far with absolute value, so we’ll stick with it.
We consider x and y separately.

Wehave|x+1l=§c+1whenx2—1and|x+1|=——x_——1whenx<—1.

Wehave|y—2|=y—-2wheny>2and|y—2/=—(y-2)=2-ywheny <2

Now we combine these to produce four cases: Y

e x> -1,y >2. Ourequationthenisx+1+y—-2=50orx+y=6.

e x> -1,y <2 Ourequationthenisx+1+2-y=50rx—y =2

x < -1,y 2 2. Our equation thenis —x—1+y~2=50r-x+y =8~ x

x < -1,y <2. Our equation thenis —x-1+2~-y=50r—x—-y =4

We graph each of the pieces, careful not to go outside the boundaries ]
of each case. In the graph at right, the dashed lines y = 2 and x = -1 x+1+ly—2 =
divide the plane into the four regions corresponding to our cases. [

20.2.1 Solve the following two equations.
(@ r+3[-7=09. ®) Ir+8l+7=4.
20.2.2 If [x — 2| = p, where x < 2, then which of the following expressions must equal x — p?
®W-2 ®2 ©2-% Op-2 @Rp-2
(Source: AMC 10)
20.2.3 Solve the following two equations.
(@) lex—-7|+3=12 (b) 2[3-5x=

20.2.4 Solve the equation |y — 6| + 2y = 9.
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