SOLVED PROBLEMS ON TAYLOR AND MACLAURIN SERIES

TAYLOR AND MACLAURIN SERIES

Taylor Series of a function f at $\mathrm{x}=\mathrm{a}$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

It is a Power Series centered at a.

Maclaurin Series of a function f is a Taylor Series at $\mathrm{x}=0$.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

$$
\begin{aligned}
& \text { BASIC MACLAURIN SERIES } \\
& e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
& \sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)} \\
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!} \\
& (1+x)^{p}=1+p x+\frac{p(p-1)}{2!} x^{2}+\cdots
\end{aligned}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

USE TAYLOR SERIES

1 To estimate values of functions on an interval.
2 To compute limits of functions.
3 To approximate integrals.
4 To study properties of the function in question.

FINDING TAYLOR SERIES

To find Taylor series of functions, we may:

1 Use substitution.
2 Differentiate known series term by term.
3 Integrate known series term by term.
4 Add, divide, and multiply known series.

OVERVIEW OF PROBLEMS

Find the Maclaurin Series of the following functions.

$$
\begin{aligned}
& \begin{array}{l}
1 \sin \left(x^{2}\right) \quad 2 \frac{\sin (x)}{x} \quad \begin{array}{|lll}
3 & \arctan (x) \\
4 & \cos ^{2}(x) & 5 \\
x^{2} e^{x} & \boxed{ } \sqrt{1-x^{3}}
\end{array}
\end{array} \\
& 7 \sinh (x) \\
& x^{2} \arctan \left(x^{3}\right)
\end{aligned}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

OVERVIEW OF PROBLEMS

Find the Taylor Series of the following functions at the given value of a.

$$
12 \quad e^{-2 x} \text { at } a=1 / 2 \quad 13 \quad \sin (x) \text { at } a=\pi / 4
$$

1410^{\times}at $\mathrm{a}=1$
$15 \ln (1+x)$ at $a=-2$

Find the Maclaurin Series of the following functions.

MACLAURIN SERIES

Problem 1

$$
f(x)=\sin \left(x^{2}\right)
$$

Solution

Substitute x by x^{2} in the Maclaurin Series of sine.
Hence $\sin \left(x^{2}\right)=\sum_{k=0}^{\infty}(-1)^{k} \frac{\left(x^{2}\right)^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{4 k+2}}{(2 k+1)!}$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Problem 2

$$
f(x)=\frac{\sin (x)}{x}
$$

Solution

Divide the Maclaurin Series of sine by x . Hence,
$\frac{\sin (x)}{x}=\frac{1}{x} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k+1)!}$

MACLAURIN SERIES

Problem 3 $\quad \mathrm{f}(\mathrm{x})=\arctan (\mathrm{x})$

Solution

Observe that $f^{\prime}(x)=\frac{1}{1+x^{2}}$. To find the Maclaurin
Series of $f^{\prime}(x)$ substitute $-x^{2}$ for x in Basic Power Series formula.

MACLAURIN SERIES

Solution(cont'd)

Hence $f^{\prime}(x)=\frac{1}{1+x^{2}}=\sum_{k=0}^{\infty}\left(-x^{2}\right)^{k}=\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}$.
By integrating both sides, we obtain

$$
\begin{aligned}
f(x) & =\int\left(\sum_{k=0}^{\infty}(-1)^{k} x^{2 k}\right) d x=\sum_{k=0}^{\infty}(-1)^{k} \int x^{2 k} d x \\
& =\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}+C .
\end{aligned}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Solution(cont'd)

0 is in the interval of convergence. Therefore we can insert $x=0$ to find that the integration constant $c=0$. Hence the Maclaurin series of $\arctan (x)$ is
$\arctan (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}$.

MACLAURIN SERIES

Problem 4

$$
f(x)=\cos ^{2}(x)
$$

Solution

By the trigonometric identity,
$\cos ^{2}(x)=(1+\cos (2 x)) / 2$.
Therefore we start with the Maclaurin Series of cosine.

MACLAURIN SERIES

Solution(cont'd)

Substitute x by $2 x \operatorname{in} \cos (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k}}{(2 k)!}$.
Thus $\cos (2 x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 x)^{2 k}}{(2 k)!}$. After adding 1 and dividing by 2 , we obtain

MACLAURIN SERIES

Solution(cont'd)

$$
\begin{aligned}
\cos ^{2}(x) & =\frac{1}{2}\left(1+\sum_{k=0}^{\infty}(-1)^{k} \frac{(2 x)^{2 k}}{(2 k)!}\right) \\
& =\frac{1}{2}\left(1+1-\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{4}}{4!}-\ldots\right) \\
& =1+\sum_{k=1}^{\infty}(-1)^{k} \frac{2^{2 k-1}}{(2 k)!} x^{2 k}
\end{aligned}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Problem 5
$f(x)=x^{2} e^{x}$

Solution

Multiply the Maclaurin Seris of e^{x} by x^{2}.
Hence, $x^{2} e^{x}=x^{2} \sum_{k=0}^{\infty} \frac{x^{k}}{k!}=\sum_{k=0}^{\infty} \frac{x^{k+2}}{k!}$.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Problem 6

$$
f(x)=\sqrt{1-x^{3}}
$$

Solution

By rewriting $f(x)=\left(1+\left(-x^{3}\right)\right)^{1 / 2}$. By substituting x by $-x^{3}$ in the binomial formula with $p=1 / 2$ we obtain,
$\sqrt{1-x^{3}}=1-\frac{1}{2} x^{3}-\frac{1}{8} x^{6}-\ldots$
Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Problem 7
$f(x)=\sinh (x)$

Solution

By rewriting $f(x)=\frac{e^{x}-e^{-x}}{2}$. Substitute x by $-x$ in
the Maclaurin Series of $e^{x}=1+x+\frac{x^{2}}{2}+\ldots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$,

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Solution(cont'd)

$$
e^{-x}=\sum_{k=0}^{\infty} \frac{(-x)^{k}}{k!}=1-x+\frac{x^{2}}{2!}-\cdots
$$

Thus when we add e^{x} and e^{-x}, the terms with odd power are canceled and the terms with even power are doubled. After dividing by 2, we obtain

$$
\sinh (x)=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots=\sum_{k=0}^{\infty} \frac{x^{2 k}}{(2 k)!}
$$

MACLAURIN SERIES

Problem 8

$$
f(x)=\frac{e^{x}}{1-x}
$$

Solution

We have $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots$ and $\frac{1}{1-x}=1+x+x^{2}+\ldots$ To find the Maclaurin Series of $f(x)$, we multiply these series and group the terms with the same degree.

MACLAURIN SERIES

Solution(cont'd)

$$
\begin{aligned}
(1+x & \left.+\frac{x^{2}}{2!}+\ldots\right) \times\left(1+x+x^{2}+\ldots\right) \\
& =1+2 x+\left(1+1+\frac{1}{2!}\right) x^{2}+\text { higher degree terms } \\
& =1+2 x+\frac{5}{2} x^{2}+\text { higher degree terms }
\end{aligned}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

MACLAURIN SERIES

Problem 9

$$
f(x)=x^{2} \arctan \left(x^{3}\right)
$$

Solution

We have calculated the Maclaurin Series of $\arctan (x)$

$$
\arctan (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{2 k+1}
$$

Substituting x by x^{3} in the above formula, we obtain

MACLAURIN SERIES

Solution(cont'd)

$$
\arctan \left(\mathrm{x}^{3}\right)=\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{\left(\mathrm{x}^{3}\right)^{2 \mathrm{k}+1}}{2 \mathrm{k}+1}=\sum_{\mathrm{k}=0}^{\infty}(-1)^{\mathrm{k}} \frac{\mathrm{x}^{6 \mathrm{k}+3}}{2 \mathrm{k}+1}
$$

Multiplying by x^{2} gives the desired Maclaurin Series

$$
x^{2} \arctan \left(x^{3}\right)=x^{2} \sum_{k=0}^{\infty}(-1)^{k} \frac{x^{6 k+3}}{2 k+1}=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{6 k+4}}{2 k+1}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

Find the Taylor Series of the following functions at given a.

TAYLOR SERIES

Problem 10

$$
f(x)=x-x^{3} \text { at } a=-2
$$

Solution

Taylor Series of $f(x)=x-x^{3}$ at $a=-2$ is of the form
$f(-2)+f^{(1)}(-2)(x+2)+\frac{f^{(2)}(-2)}{2!}(x+2)^{2}$
$+\frac{f^{(3)}(-2)}{3!}(x+2)^{3}+\frac{f^{(4)}(-2)}{4!}(x+2)^{4}+\ldots$
Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

TAYLOR SERIES

Solution(cont'd)

Since f is a polynominal function of degree 3, its derivatives of order higher than 3 is 0 . Thus
Taylor Series is of the form
$f(-2)+f^{(1)}(-2)(x+2)+\frac{f^{(2)}(-2)}{2!}(x+2)^{2}+\frac{f^{(3)}(-2)}{3!}(x+2)^{3}$

TAYLOR SERIES

Solution(cont'd)

By direct computation,
$f(-2)=6, f^{(1)}(-2)=-11, f^{(2)}(-2)=12, f^{(3)}(-2)=-6$
So the Taylor Series of $x-x^{3}$ at $a=-2$ is

$$
6-11(x+2)+6(x+2)^{2}-(x+2)^{3}
$$

TAYLOR SERIES

Problem 11 $f(x)=\frac{1}{x}$ at $a=2$

Solution

Taylor Series of $f(x)=1 / x$ at $a=2$ is of the form $\sum_{k=0}^{\infty} \frac{f^{(k)}(2)}{k!}(x-2)^{k}$. We need to find the general expression of the $\mathrm{k}^{\text {th }}$ derivative of $1 / \mathrm{x}$.

TAYLOR SERIES

Solution(cont'd)

We derive $1 / x$ until a pattern is found.
$f(x)=1 / x=x^{-1}, f^{(1)}(x)=(-1) x^{-2}$
$f^{(2)}(x)=(-1)(-2) x^{-3}, f^{(3)}(x)=(-1)(-2)(-3) x^{-4}$
In general, $f^{(k)}(x)=(-1)^{k} k!x^{-(k+1)}$. Therefore $f^{(k)}(2)=(-1)^{k} k!2^{-(k+1)}$.

TAYLOR SERIES

Solution(cont'd)

After inserting the general expression of the k^{th} derivative evaluated at 2 we obtain,
$\sum_{k=0}^{\infty} \frac{f^{(k)}(2)}{k!}(x-2)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}(-1)^{k} k!2^{-(k+1)}(x-2)^{k}$
Hence, the the Taylor Series of $\frac{1}{x}$ is $\sum_{k=0}^{\infty} \frac{(-1)^{k}}{2^{(k+1)}}(x-2)^{k}$.

TAYLOR SERIES

Problem 12 $f(x)=e^{-2 x}$ at $a=1 / 2$

Solution

Taylor Series of $f(x)=e^{-2 x}$ at $a=1 / 2$ is of the form $\sum_{k=0}^{\infty} \frac{f^{(k)}(1 / 2)}{k!}\left(x-\frac{1}{2}\right)^{k}$. We need to find the general expression of the $\mathrm{k}^{\text {th }}$ derivative of $\mathrm{e}^{-2 x}$.

TAYLOR SERIES

Solution(cont'd)

We derive $\mathrm{e}^{-2 x}$ until a pattern is found.
$f(x)=e^{-2 x}, f^{(1)}(x)=-2 e^{-2 x}, f^{(2)}(x)=-2-2 e^{-2 x}$
In general, $f^{(k)}(x)=(-1)^{k} 2^{k} e^{-2 x}$.
Therefore $f^{(k)}(1 / 2)=(-1)^{k} 2^{k} e^{-2 \times \frac{1}{2}}=\frac{(-1)^{k} 2^{k}}{e}$.

TAYLOR SERIES

Solution(cont'd)

After inserting the general expression of the $\mathrm{k}^{\text {th }}$ derivative evaluated at $1 / 2$ we obtain,
$\sum_{k=0}^{\infty} \frac{f^{(k)}(1 / 2)}{k!}\left(x-\frac{1}{2}\right)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} \frac{(-1)^{k} 2^{k}}{e}\left(x-\frac{1}{2}\right)^{k}$
Hence, the the Taylor Series of $\mathrm{e}^{-2 x}$ is

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{e \times(k!)}(2 x-1)^{k}
$$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

TAYLOR SERIES

Problem $13 \quad f(x)=\sin (x)$ at $a=\pi / 4$

Solution

Taylor Series of $\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})$ at $\mathrm{a}=\pi / 4$ is of the form $\sum_{k=0}^{\infty} \frac{f^{(k)}(\pi / 4)}{k!}\left(x-\frac{\pi}{4}\right)^{k}$. We need to find the general expression of the $k^{\text {th }}$ derivative of $\sin (x)$.

TAYLOR SERIES

Solution(cont'd)

We derive $\sin (x)$ until a pattern is found. $f(x)=\sin (x), f^{(1)}(x)=\cos (x), f^{(2)}(x)=-\sin (x)$
$\{\sin (x)$ if $k=4 n$
In general, $f^{(k)}(x)=\left\{\begin{array}{l}\cos (x) \text { if } k=4 n+1\end{array}\right.$
$-\sin (x)$ if $k=4 n+2$
$-\cos (x)$ if $k=4 n+3$

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

TAYLOR SERIES

Solution(cont'd)

In other words, even order derivatives are either $\sin (x)$ or $-\sin (x)$ and odd order derivatives are either $\cos (x)$ or $-\cos (x)$. So the Taylor Series at $a=\pi / 4$ can be written as
$\sum_{k=0}^{\infty}(-1)^{k} \frac{\sin (\pi / 4)}{(2 k)!}\left(x-\frac{\pi}{4}\right)^{2 k}+\sum_{k=0}^{\infty}(-1)^{k} \frac{\cos (\pi / 4)}{(2 k+1)!}\left(x-\frac{\pi}{4}\right)^{2 k+1}$

TAYLOR SERIES

Solution(cont'd)

Since, at $\mathrm{a}=\pi / 4, \sin (\pi / 4)=\cos (\pi / 4)=1 / \sqrt{2}$, the Taylor Series can be simplified to
$\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{2}(2 k)!}\left(x-\frac{\pi}{4}\right)^{2 k}+\sum_{k=0}^{\infty} \frac{(-1)^{k}}{\sqrt{2}(2 k+1)!}\left(x-\frac{\pi}{4}\right)^{2 k+1}$.

TAYLOR SERIES

Problem 14 $f(x)=10^{x}$ at $a=1$

Solution

Taylor Series of $f(x)=10^{x}$ at $a=1$ is of the form $\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(x-1)^{k}$. We need to find the general expression of the $\mathrm{k}^{\text {th }}$ derivative of 10^{x}.

TAYLOR SERIES

Solution(cont'd)

We derive 10^{x} until a pattern is found.
$f(x)=10^{x}, f^{(1)}(x)=\ln (10) \times 10^{x}, f^{(2)}(x)=\ln ^{2}(10) 10^{x}$
In general, $f^{(k)}(x)=\ln ^{k}(10) 10^{x}$.
Therefore $f^{(k)}(1)=\ln ^{k}(10) 10$.

TAYLOR SERIES

Solution(cont'd)

After inserting the general expression of the $\mathrm{k}^{\text {th }}$ derivative evaluated at 1 we obtain,
$\sum_{k=0}^{\infty} \frac{f^{(k)}(1)}{k!}(x-1)^{k}=\sum_{k=0}^{\infty} \frac{\ln ^{k}(10) 10}{k!}(x-1)^{k}$

TAYLOR SERIES

Problem 15

$$
f(x)=\ln (1+x) \text { at } a=-2
$$

Solution

Taylor Series of $f(x)=\ln (1+x)$ at $a=-2$ is of the form $\sum_{k=0}^{\infty} \frac{f^{(k)}(-2)}{k!}(x+2)^{k}$. We need to find the general expression of the $k^{\text {th }}$ derivative of $\ln (1+x)$.

TAYLOR SERIES

Solution(cont'd)

We derive $\ln (x+1)$ until a pattern is found.
$f(x)=\ln (x+1), f^{(1)}(x)=\frac{1}{x+1}, f^{(2)}(x)=-\frac{1}{(x+1)^{2}}$
In general, $f^{(k)}(x)=\frac{(-1)^{k}}{(x+1)^{k}}$. Therefore $f^{(k)}(-2)=1$.

Mika Seppälä: Solved Problems on Taylor and Maclaurin Series

TAYLOR SERIES

Solution(cont'd)

After inserting the general expression of the $\mathrm{k}^{\text {th }}$ derivative evaluated at - 2 we obtain

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(-2)}{k!}(x+2)^{k}=\sum_{k=0}^{\infty} \frac{1}{k!}(x+2)^{k} .
$$

