SOLVED PROBLEMS ON
TAYLOR AND MACLAURIN
SERIES




TAYLOR AND MACLAURIN

SERI

=S5

Taylor Series of a function f at X =a Is

gl (a)

2o

k!

x-af

It IS a Power Series centered at a.

Maclaurin Series of a function f 1s a
Taylor Series at x = 0.
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BASIC MACLAURIN SERIE
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USE TAYLOR SERIES

To estimate values of functions on an
Interval.

To compute limits of functions.
To approximate integrals.

To study properties of the function in
question.
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FINDING TAYLOR SERIES

To find Taylor series of functions, we may:

Use substitution.

Differentiate known series term by term.

Integrate known series term by term.

AW NP

Add, divide, and multiply known series.
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OV

~RVI

functions.

1 sin(xz)
4| cos’ (x)
4 sinh(x)

W OF PROBLEMS

Find the Maclaurin Series of the following

sin(x)

8

1-Xx

9

arctan ( X )

\/1—x3

X2 arctan(x3)
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~RVI

W OF PROBL

-MS

Find the Taylor Series of the following
functions at the given value of a.

1

10| x-x>ata=-2 |11| = ata

X

=2
12| e ata=1/2 13 Sin(x) at a=r/4

14| 10 ata=1 15 |n(1+x) ata=-2
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Find the Maclaurin Series of the following
functions.
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MACLAURIN S

Problem 1 f (x) = sin(xz)

Solution

R

Substitute x by x° in the Maclaurin Series of sine.

Hence sm( )

s 2

(2k +1)

Mika Seppala: Solved Problems on Taylor and Maclau
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MACLAURIN SERIE

sin(x)

Problem 2 f (x) =

X

Solution

Divide the Maclaurin Series of sine by x. Hence,

sm( ) w2k o K x2K

=2 e 2

x & (2k+1) = (2k+1)!
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MACLAURIN SERIE

Problem 3 f (x) = arctan(x)

Solution

Observe that f (x) = L . To find the Maclaurin

1+ X°
Series of f (x) substitute — x* for X in Basic

Power Series formula.
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MACLAURIN SERIE

Solution(cont’d)

Hencef'( ) i( ) i(—l)kxz“.

1+ X K=0
By integrating both sides, we obtain

f(x) = j(z ) Xijdx - S () Jxox

i( ) +C.

—q 2k +1
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MACLAURIN SERIES

Solution(cont’d)

O is In the interval of convergence. Therefore
we can insert X = 0 to find that the integration
constant c = 0. Hence the Maclaurin series of
arctan(x) IS
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MACLAURIN S

Problem 4 f (X) = COoS® (x)

Solution

By the trigonometric identity,

cos’ (x) = (1+ COS(ZX))/Z.

R

Therefore we start with the Maclaurin Series of

cosine.
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MACLAURIN SERIE

Solution(cont’d)

oo 2k

. . N ) X
Substitute x by 2x mcos(x) S é( 1) (2k)!'
_ (2x)2k
Thus cos(2x) — k%(—l)k (2k)! . After adding 1

and dividing by 2, we obtain
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MACLAURIN SERIE

Solution(cont’d)

( ) k (ZX)Zk )

1
cosz(x)zg 1+ %(—1) (2k)!
\ y,
( \
:l 1—|—1—(2X)2 +(2X)4 Sl
2 21 41
\ Y,

K 22k—1

:1+§1(_1) (2k); 4

2k
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MACLAURIN S

Problem 5 f (X) = x°e*

Solution

R

Multiply the Maclaurin Seris of e* by x°.

oo k 0o k+2
Hence, x%e* = xzzx— =) X

<kl S ok
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MACLAURIN SERIE

Problem 6 f (x) = V1 x°

Solution

By rewriting f (x) = (1+ (—x3))1/2. By substituting X

by -x® in the binomial formula with p =1/2
we obtain ,

\/1—x3 :1—1x3—£x6—...
2 8
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MACLAURIN SERIE

Problem 7 f (X) = sinh(x)

Solution
. e* —e™” . .
By rewriting f (x) = e Substitute X by — X In
the Maclaurin Series of e* =1+ X + — 4+, %
k=0
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MACLAURIN SERIE

Solution(cont’d)

k
o [—X %2
YE
o K! 21
Thus when we add e* and e, the terms with odd
power are canceled and the terms with even power

are doubled. After dividing by 2, we obtain

- X2 X4 oo X2k
S|nh(x):1+ N + E +...= é(zk)!
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MACLAURIN SERIE

Problem 8 f (x) - _©

Solution

y X 1
We havee” =1+ X+ —+... and
21 1-Xx

To find the Maclaurin Series of f (x) we multiply

=1+ X+ X +...

these series and group the terms with the same
degree.
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MACLAURIN SERIE

Solution(cont’d)

[1+x+)2(—2|+...]><(1+x+x2+...)

=1+2X + [1 +1+ i) X° + higher degree terms

2!

—142x 42X

5 + higher degree terms
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MACLAURIN S

R

Problem 9 f (x) = X° arctan(x“”)

Solution

We have calculated the Maclaurin Series of arctan(x)

2k+1

arctan(x) = i (—1)k ~

. 2k +1
Substituting X by x° in the above formula, we obtain
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MACLAURIN SERIES

Solution(cont’d)
oo 6k+3

arctan(x3):i(—) ( Z( )

- 2k+1 o 2k +1
Multiplying by x* gives the desired Maclaurin Series

ok+1
3) i

6k+4

S

KeD 2k +1 2k +1
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Find the Taylor Series of the following
functions at given a.
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TAYLOR SERIES

Problem 10 f (X) =Xx-Xx>ata=-2

Solution

Taylor Series of f (x) = X — x°> at a=-2 is of the form

£ (-2)

f (—2) £ (—2)(x + 2) + . (x + 2)2
£ (22 . (-2 )
+ C:E! )(x+2) + L )(x+2) +...
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TAYLOR SERIES

Solution(cont’d)

Since f Is a polynominal function of degree 3,
Its derivatives of order higher than 3 is 0. Thus
Taylor Series iIs of the form

f (—2) + f(l) (—2)(x + 2) +
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TAYLOR SERI

Solution(cont’d)

By direct computation,

f(-2)=s6, f¥(-2)=-11, ¥ (-2) =12, £(-2)= -6

So the Taylor Series of x — x° at a =

6—11(x +2) + 6(x + 2)2 — (x +2)3

—2 1S
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TAYLOR S

R

=S

Problem 11 f (x) = 1 ata=2

X

Solution

Taylor Series of f (x) = 1/x at a=2 iIs of the form

f(2)

> (x — 2)k. We need to find the general
=0 kI

expression of the k™ derivative of 1/x.
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TAYLOR SERIES

Solution(cont’d)

We derive 1/x until a pattern is found.

f (x) =1/x = x1, £ (x) = (—1)x‘2

()~ ()2, ()~ (1) -2l (o)
In general, f(k) (x) = (—1)k k!x_(kﬂ). Therefore

£1(2) = (1) ke ™
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TAYLOR SERIES

Solution(cont’d)

After inserting the general expression of the k"
derivative evaluated at 2 we obtain,

o B P

k
1 s 1) :
Hence, the the Taylor Series of — Is 1 (x — 2) :
X k=0 2
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TAYLOR SERIES

Problem 12 f (x) —e* ata= 1/2

Solution

Taylor Series of f (x) e at a=1/2 is of the form

C2) q) |
D X —= | . We need to find the general
0 k! 2

expression of the k™ derivative of e™*.
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TAYLOR SERIES

Solution(cont’d)

We derive e* until a pattern is found.
f (x) = e ¥, f(l) (x) = _2e %, f(z) (x) = -2 _2e

In general, £ (x) = (—1)k 2ke™x.

Therefore f(k) (1/2) = (—1)k 2ke_2X% = (_1) e :

e
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TAYLOR SERIES

Solution(cont’d)

After inserting the general expression of the k™
derivative evaluated at 1/ 2 we obtain,

< (2 (X ] l]k a2 (X i ;]k

0 K! 2 o K! e 2
Hence, the the Taylor Series of e™* is

3 =

1/
k:oex(k!)
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TAYLOR SERIES

Problem 13 f(x) = sin(x) at a= 7r/4

Solution

Taylor Series of f (x) = sin(x) at a= n/4 IS of the

£ (/4 ‘
form ) (n/ ) x — 2 | . We need to find the
S5 k! 4

general expression of the k™ derivative of sin(x).
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TAYLOR SERIES

Solution(cont’d)

We derive sin(x) until a pattern is found.

f (x) = sin(x), f(l) (x) = cos(x), f(z) (x) = —sin(x)
(sin(x) If K =4n

cos(x) ITk=4n+1

) () =
In general, f (X)_<—sin(x) ifk =4n+2

\—cos(x) Ifk=4n+3
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TAYLOR SERIES

Solution(cont’d)

In other words, even order derivatives are either sin(x)
or —sin(x) and odd order derivatives are either cos(x)

or —cos(x). So the Taylor Series at a = 7r/4 can be

written as
S Ty () S g ()
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TAYLOR SERI

Solution(cont’d)

=S

Since, at a = n/4, sin(n/4) = cos(n/4) = 1/\/5 the

Taylor Series can be simplified to

)

Z (

z(éi)! (X“] 25 EZk):l) [XZ]
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TAYLOR S

R

=S

Problem 14 f (X) =10 ata=1

Solution

Taylor Series of f (x) =10" ata=1 is of the form

£4) (1)

oo Kk
Zk (x —1) . We need to find the general
= Kl

expression of the k™ derivative of 10*.
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TAYLOR S

Solution(cont’d)

We derive 10 until a pattern is found.
)=1In(10)x 10, £%(x) = In?(10)120"

Flx)=1

Therefore f )(1) = In" (10)10.
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TAYLOR SERIES

Solution(cont’d)

After inserting the general expression of the k™
derivative evaluated at 1 we obtain,

. (1) - In*(10)10

Z; K1 (x-1) =% K1 (x-1)
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TAYLOR S

R

=S

Problem 15 f(x) = In(1+ x) ata=-2

Solution

Taylor Series of f (x) = In(1+ x) ata=-2Is of

f(-2)

the form Z::O "

(x + 2)k. We need to find the

general expression of the k™ derivative of In(1+ x).
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TAYLOR S

Solution(cont’d)

R

=S

We derive In(x +1) until a pattern is found.

f(x) = In(x+1), f(l)(X) = i

f(z)(x)z— =

(x +1)2

In general, f(k) (X) = (_1) - Therefore f(k) (—2) —

(x +1)
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TAYLOR SERIES

Solution(cont’d)

After inserting the general expression of the k™
derivative evaluated at -2 we obtain

2 (k) s k 2 k
50200 - 5L (x+2)"

o K
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