

VECTORS

One such product is the dot product, which we will discuss in this section.

Another is the cross product, which we will discuss in Lesson 87

VECTORS

Lesson 83 The Dot Product

In this section, we will learn about: Various concepts related to the dot product and its applications. THE DOT PRODUCTDefinition 1If $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$, thenthe dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by: $\mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + a_3b_3$

DOT PRODUCT

Thus, to find the dot product of **a** and **b**, we multiply corresponding components and add.

SCALAR PRODUCT

The result is not a vector.

It is a real number, that is, a scalar.

• For this reason, the dot product is sometimes called the scalar product (or inner product).

DOT PRODUCT

Though Definition 1 is given for threedimensional (3-D) vectors, the dot product of two-dimensional vectors is defined in a similar fashion:

$$\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1 b_1 + a_2 b_2$$

DOT PRODUCTExample 1
$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle =$$
 $\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle =$ $(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) =$

DOT PRODUCT
 Example 1

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1) = 2$$
 $\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle = (-1)(6) + 7(2) + 4(-\frac{1}{2})$
 $= 6$
 $(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 1(0) + 2(2) + (-3)(-1)$
 $= 7$

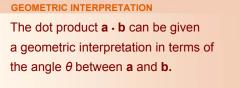
DOT PRODUCT

The dot product obeys many of the laws that hold for ordinary products of real numbers.

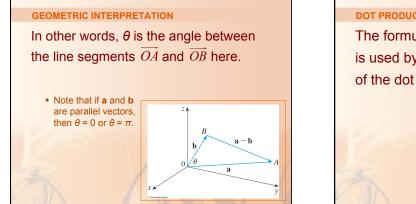
• These are stated in the following theorem.

PROPERTIES OF DOT PRODUCT Theorem 2 If **a**, **b**, and **c** are vectors in \mathbb{R}^3 and *c* is a scalar, then 1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$ 2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$ 4. $(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$

5. $0 \cdot \mathbf{a} = 0$



DOT PRODUCT PROPERTY 1 Proof

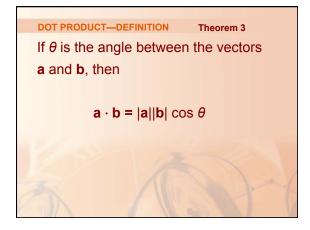

$$\mathbf{a} \cdot \mathbf{a}$$

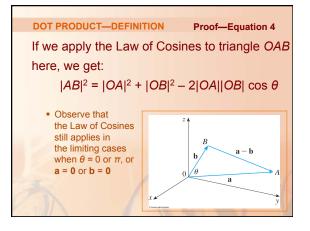
 $= a_1^2 + a_2^2 + a_3^2$
 $= |\mathbf{a}|^2$

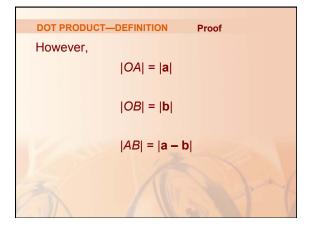
DOT PRODUCT PROPERTY 3 Proof

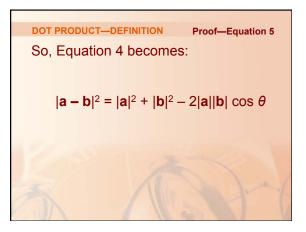
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c})$$

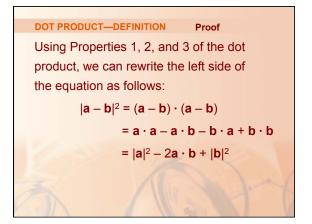
 $= \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$
 $= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$
 $= a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3$
 $= (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3)$
 $= \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$

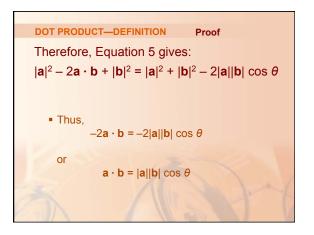

• This is defined to be the angle between the representations of **a** and **b** that start at the origin, where $0 \le \theta \le \pi$.

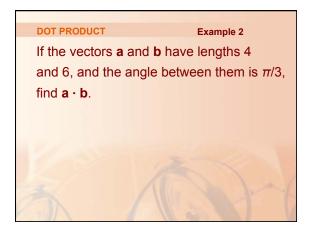


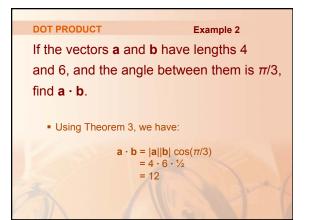

DOT PRODUCT

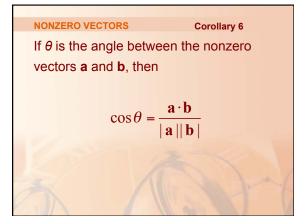

The formula in the following theorem is used by physicists as the definition of the dot product.

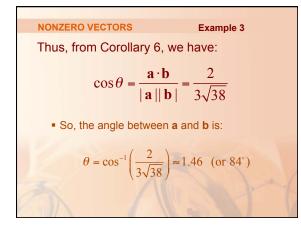


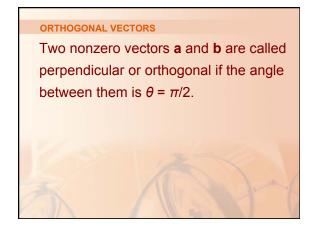


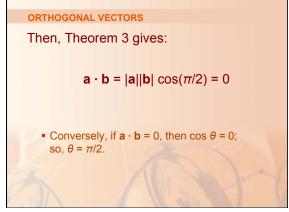







The formula in Theorem 3 also enables us to find the angle between two vectors.

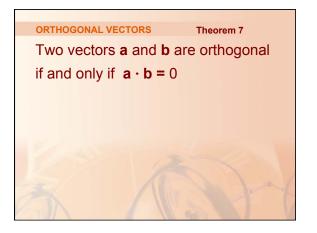


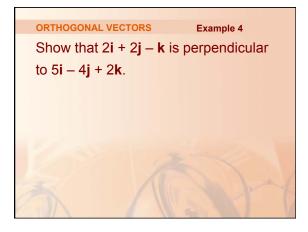

NONZERO VECTORSExample 3Find the angle between the vectors
$$a = \langle 2, 2, -1 \rangle$$
 and $b = \langle 5, -3, 2 \rangle$

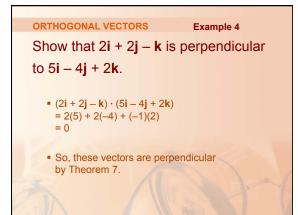
NONZERO VECTORS Example 3

$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

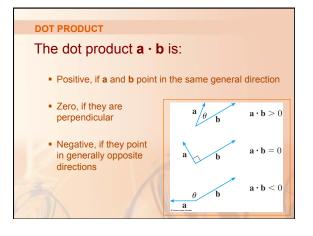
and
 $|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{38}$
Also,
 $\mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2$






ZERO VECTORS

The zero vector **0** is considered to be perpendicular to all vectors.



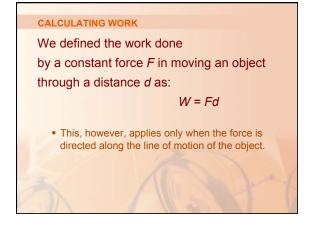
DOT PRODUCT

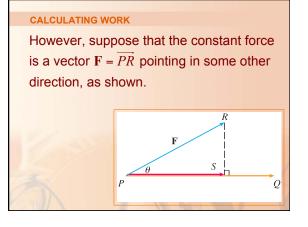
As $\cos \theta > 0$ if $0 \le \theta < \pi/2$ and $\cos \theta < 0$ if $\pi/2 < \theta \le \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta < \pi/2$ and negative for $\theta > \pi/2$.

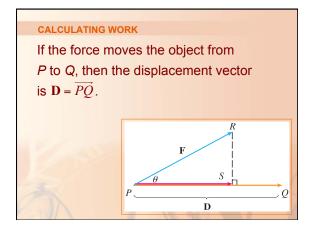
• We can think of **a** · **b** as measuring the extent to which **a** and **b** point in the same direction.

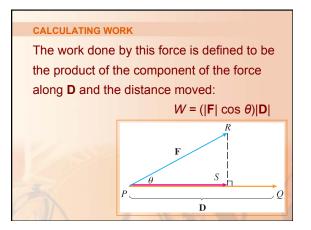
DOT PRODUCT

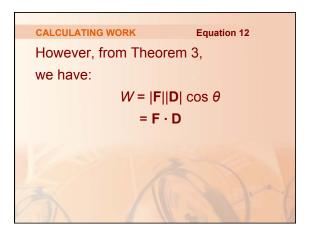
In the extreme case where **a** and **b** point in exactly the same direction, we have $\theta = 0$.


• So, $\cos \theta = 1$ and $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|$




If **a** and **b** point in exactly opposite directions, then $\theta = \pi$.


• So, $\cos \theta = -1$ and $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}| |\mathbf{b}|$


APPLICATIONS OF PROJECTIONS One use of projections occurs in physics in calculating work.

