

VECTORS

So far, we have added two vectors and multiplied a vector by a scalar.

VECTORS
 The question arises:

VECTORS

One such product is the dot product, which we will discuss in this section.

- Is it possible to multiply two vectors so that their product is a useful quantity?

THE DOT PRODUCT Definition 1

If $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$, then the dot product of \mathbf{a} and \mathbf{b} is the number $\mathbf{a} \cdot \mathbf{b}$ given by:

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

SCALAR PRODUCT

The result is not a vector.

It is a real number, that is, a scalar.

- For this reason, the dot product is sometimes called the scalar product (or inner product).

DOT PRODUCT	Example 1
$\langle 2,4\rangle \cdot\langle 3,-1\rangle=$	
$\langle-1,7,4\rangle \cdot\langle 6,2,-1 / 2\rangle=$	
$(\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}) \cdot(2 \mathbf{j}-\mathbf{k})=$	

DOT PRODUCT

Though Definition 1 is given for threedimensional (3-D) vectors, the dot product of two-dimensional vectors is defined in a similar fashion:

$$
\left\langle a_{1}, a_{2}\right\rangle \cdot\left\langle b_{1}, b_{2}\right\rangle=a_{1} b_{1}+a_{2} b_{2}
$$

DOT PRODUCT

The dot product obeys many of the laws that hold for ordinary products of real numbers.

- These are stated in the following theorem.

DOT PRODUCT PROPERTIES

These properties are easily proved using Definition 1.

- For instance, the proofs of Properties 1 and 3 are as follows.

PROPERTIES OF DOT PRODUCT Theorem 2

If \mathbf{a}, \mathbf{b}, and \mathbf{c} are vectors in R^{3} and c is a scalar, then

1. $\mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4. $(c \mathbf{a}) \cdot \mathbf{b}=c(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(c \mathbf{b})$
5. $0 \cdot a=0$

DOT PRODUCT PROPERTY 1 Proof
$\mathbf{a} \cdot \mathbf{a}$
$=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}$
$=|a|^{2}$

> DOT PRODUCT PROPERTY 3 Proof $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})$ $=\left\langle a_{1}, a_{2}, a_{3}\right\rangle \cdot\left\langle b_{1}+c_{1}, b_{2}+c_{2}, b_{3}+c_{3}\right\rangle$ $=a_{1}\left(b_{1}+c_{1}\right)+a_{2}\left(b_{2}+c_{2}\right)+a_{3}\left(b_{3}+c_{3}\right)$ $=a_{1} b_{1}+a_{1} c_{1}+a_{2} b_{2}+a_{2} c_{2}+a_{3} b_{3}+a_{3} c_{3}$ $=\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)+\left(a_{1} c_{1}+a_{2} c_{2}+a_{3} c_{3}\right)$ $=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$

GEOMETRIC INTERPRETATION

The dot product $\mathbf{a} \cdot \mathbf{b}$ can be given a geometric interpretation in terms of the angle θ between \mathbf{a} and \mathbf{b}.

- This is defined to be the angle between the representations of \mathbf{a} and \mathbf{b} that start at the origin, where $0 \leq \theta \leq \pi$.

GEOMETRIC INTERPRETATION

In other words, θ is the angle between the line segments $\overrightarrow{O A}$ and $\overrightarrow{O B}$ here.

- Note that if \mathbf{a} and \mathbf{b} are parallel vectors, then $\theta=0$ or $\theta=\pi$.

DOT PRODUCT

The formula in the following theorem is used by physicists as the definition of the dot product.

DOT PRODUCT—DEFINITION Proof-Equation 4

If we apply the Law of Cosines to triangle $O A B$ here, we get:

$$
|A B|^{2}=|O A|^{2}+|O B|^{2}-2|O A||O B| \cos \theta
$$

- Observe that the Law of Cosines still applies in the limiting cases when $\theta=0$ or π, or $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$

So, Equation 4 becomes:

$$
|\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta
$$

DOT PRODUCT—DEFINITION Proof

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of the equation as follows:

$$
\begin{aligned}
|a-b|^{2} & =(a-b) \cdot(a-b) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}+\mathbf{b} \cdot \mathbf{b} \\
& =|a|^{2}-2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{b}|^{2}
\end{aligned}
$$

Example 2
DOT PRODUCT
If the vectors \mathbf{a} and \mathbf{b} have lengths 4
and 6 , and the angle between them is $\pi / 3$,
find $\mathbf{a} \cdot \mathbf{b}$.

DOT PRODUCT
 Example 2

If the vectors \mathbf{a} and \mathbf{b} have lengths 4 and 6 , and the angle between them is $\pi / 3$, find $\mathbf{a} \cdot \mathbf{b}$.

- Using Theorem 3, we have:

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos (\pi / 3) \\
& =4 \cdot 6 \cdot 1 / 2 \\
& =12
\end{aligned}
$$

NONZERO VECTORS

Corollary 6
If θ is the angle between the nonzero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

NONZERO VECTORS

Example 3

Find the angle between the vectors

$$
\mathbf{a}=\langle 2,2,-1\rangle \text { and } \mathbf{b}=\langle 5,-3,2\rangle
$$

NONZERO VECTORS Example 3
$|\mathbf{a}|=\sqrt{2^{2}+2^{2}+(-1)^{2}}=3$
and
$|\mathbf{b}|=\sqrt{5^{2}+(-3)^{2}+2^{2}}=\sqrt{38}$
Also,

$$
a \cdot b=2(5)+2(-3)+(-1)(2)=2
$$

ORTHOGONAL VECTORS

Two nonzero vectors \mathbf{a} and \mathbf{b} are called perpendicular or orthogonal if the angle between them is $\theta=\pi / 2$.

ORTHOGONAL VECTORS

Then, Theorem 3 gives:

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\pi / 2)=0
$$

- Conversely, if $\mathbf{a} \cdot \mathbf{b}=0$, then $\cos \theta=0$; so, $\theta=\pi / 2$.

ZERO VECTORS

The zero vector $\mathbf{0}$ is considered to be perpendicular to all vectors.

- Therefore, we have the following method for determining whether two vectors are orthogonal.

ORTHOGONAL VECTORS
 Example 4

Show that $2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}$ is perpendicular to $5 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k}$.

- $(2 \mathbf{i}+2 \mathbf{j}-\mathbf{k}) \cdot(5 \mathbf{i}-4 \mathbf{j}+2 \mathbf{k})$
$=2(5)+2(-4)+(-1)(2)$
= 0
- So, these vectors are perpendicular by Theorem 7.

DOT PRODUCT

The dot product $\mathbf{a} \cdot \mathbf{b}$ is:

- Positive, if \mathbf{a} and \mathbf{b} point in the same general direction

Zero, if they are perpendicular

- Negative, if they point in generally opposite directions

DOT PRODUCT

As $\cos \theta>0$ if $0 \leq \theta<\pi / 2$ and $\cos \theta<0$ if $\pi / 2<\theta \leq \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta<\pi / 2$ and negative for $\theta>\pi / 2$.

- We can think of $\mathbf{a} \cdot \mathbf{b}$ as measuring the extent to which \mathbf{a} and \mathbf{b} point in the same direction.

DOT PRODUCT

In the extreme case where \mathbf{a} and \mathbf{b} point in exactly the same direction, we have $\theta=0$.

- So, $\cos \theta=1$ and $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}|$

DOT PRODUCT

If \mathbf{a} and \mathbf{b} point in exactly opposite directions, then $\theta=\pi$.

- So, $\cos \theta=-1$ and $\mathbf{a} \cdot \mathbf{b}=-|\mathbf{a}| \mathbf{b} \mid$

CALCULATING WORK

We defined the work done by a constant force F in moving an object through a distance d as:

$$
W=F d
$$

- This, however, applies only when the force is directed along the line of motion of the object.

CALCULATING WORK

If the force moves the object from P to Q, then the displacement vector is $\mathbf{D}=\overrightarrow{P Q}$.

APPLICATIONS OF PROJECTIONS

One use of projections occurs in physics in calculating work.

CALCULATING WORK

However, suppose that the constant force is a vector $\mathbf{F}=\overrightarrow{P R}$ pointing in some other direction, as shown.

CALCULATING WORK

The work done by this force is defined to be the product of the component of the force along \mathbf{D} and the distance moved:

CALCULATING WORK

Equation 12
However, from Theorem 3, we have:

$$
\begin{aligned}
W & =|\mathbf{F}||\mathbf{D}| \cos \theta \\
& =\mathbf{F} \cdot \mathbf{D}
\end{aligned}
$$

CALCULATING WORK

Therefore, the work done by a constant force F is:

- The dot product F • D, where D is the displacement vector.

CALCULATING WORK

Example 7
A wagon is pulled a distance of 100 m along a horizontal path by a constant force of 70 N .

The handle of the wagon is held at an angle of 35° above the horizontal.

- Find the work done by the force.

Then, the work done is:

$$
\begin{aligned}
W & =\mathbf{F} \cdot \mathbf{D}=|\mathbf{F}||\mathbf{D}| \cos 35^{\circ} \\
& =(70)(100) \cos 35^{\circ} \\
& \approx 5734 \mathrm{~N} \cdot \mathrm{~m} \\
& =5734 \mathrm{~J}
\end{aligned}
$$

CALCULATING WORK

Example 7
Suppose F and D are the force and displacement vectors, as shown.

CALCULATING WORK
 Example 8

A force is given by a vector $\mathbf{F}=3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}$ and moves a particle from the point $P(2,1,0)$ to the point $Q(4,6,2)$.

- Find the work done.

Example 8
CALCULATING work The displacement vector is $\mathbf{D}=\overrightarrow{P Q}=\langle 2,5,2\rangle$ So, by Equation 12, the work done is: \qquadW F F $\cdot \mathbf{D}$ $=\langle 3,4,5\rangle \cdot\langle 2,5,2\rangle$ $=6+20+10=36$ - If the unit of length is meters and the magnitude of the force is measured in newtons, then the work done is 36 joules.

