

|  |  |
| :---: | :---: |
|  |  |
|  |  |

## What do they look like?

Vectors can be represented as:
-Straight Lines

- Column Vectors (directed lines segments)


Vectors are pathways

## Position Vectors

$\overrightarrow{O A}$ is the journey from the origin to the point $A$. It is known as the position vector written a
$\overrightarrow{O B}$ Is the position vector of the point $b$, written $b$.

$\overrightarrow{A B}$
$=b-a$ where $a$ and $b$ are the position vectors of $A$ and $B$

## Example

If $P$ and $Q$ have coordinates $(4,8)$ and 2,3 ),
respectively, find the components of $P Q$.
$\overrightarrow{P Q}=q-p$

$$
\binom{2}{3}-\binom{4}{8}=\binom{-2}{-5}
$$

If we want to add vectors that are in the form $a \mathbf{i}+b \mathbf{j}$, we can just add the $\mathbf{i}$ components and then the $\mathbf{j}$ components.

$$
\mathbf{v}=-2 \mathbf{i}+5 \mathbf{j} \quad \mathbf{w}=3 \mathbf{i}-4 \mathbf{j}
$$

$$
\mathbf{v}+\mathbf{w}=-2 \mathbf{i}+5 \mathbf{j}+3 \mathbf{i}-4 \mathbf{j}=\mathbf{i}+\mathbf{j}
$$

When we want to know the magnitude of the vector (remember this is the length) we denote it

$$
\begin{gathered}
\|\mathbf{v}\|=\sqrt{(-2)^{2}+(5)^{2}} \\
=\sqrt{29}
\end{gathered}
$$

(A) Operations with Algebraic Vectors

- Oxford 11D, p567, Q4
- Oxford 11G, p579, Q2,3,5
- Dunkley, Chap 1.6, p26, Q2f,4c,15


## (B) Magnitude and Direction of Vectors

- (1) Given the point $P(3,7)$, determine the length and direction of the position vector $\overrightarrow{O P}$
- (2) How would you do the same $Q$ for a vector in $R^{3}$, using the point $P(3,7,2)$ ?

If we know the magnitude and direction of the vector, let's see if we can express the vector in $a \mathbf{i}+b \mathbf{j}$ form.

$$
\|\mathbf{v}\|=5, \alpha=150^{\circ}
$$

As usual we can use the trig we know to find the length in the horizontal direction and in the vertical direction.


$$
\mathbf{v}=\|\mathbf{v}\|(\cos \alpha \mathbf{i}+\sin \alpha \mathbf{j})
$$

$$
\mathbf{v}=5\left(\cos 150^{\circ} \mathbf{i}+\sin 150^{\circ} \mathbf{j}\right)=-\frac{5 \sqrt{3}}{2} \mathbf{i}+\frac{5}{2} \mathbf{j}
$$

## (B) Magnitude and Direction of Vectors

(3) Find the angle between the vectors $u=2 i+3 j$ and the vector $\mathbf{v}=5 \mathrm{i}+\mathrm{j}$

- (4) Given the three points $A(2,1,3), B(3,5,1)$ and $C(4,3,6)$, determine:
- (i) the perimeter of this triangle
- (ii) HENCE, use Herron's Formula to find its area
- (iii) HENCE, determine the measure of all three of the interior angles.


## (C) Collinearity

A unit vector is a vector with magnitude 1.
If we want to find the unit vector having the same direction as a given vector, we find the magnitude of the vector and divide the vector by that value.

- (1) Use vectors to demonstrate that these points are collinear:
- (i) P(15,10), Q(6,4), R(-12,-8)
- (ii) $D(33,-5,20), E(6,4,-16), F(9,3,-12)$
- (2) Oxford, 11F, p573, Q3,4,6,7

$$
\begin{aligned}
& \mathbf{w}=3 \mathbf{i}-4 \mathbf{j} \quad \text { What is }\|\mathbf{w}\| ? \\
& \|\mathbf{w}\|=\sqrt{(3)^{2}+(-4)^{2}}=\sqrt{25}=5
\end{aligned}
$$

If we want to find the unit vector having the same direction as $\mathbf{w}$ we need to divide w by 5 .

$$
\begin{array}{r}
\mathbf{u}=\frac{3}{5} \mathbf{i}-\frac{4}{5} \mathbf{j} \\
\|\mathbf{u}\|=\sqrt{\left(\frac{3}{5}\right)^{2}+\left(-\frac{4}{5}\right)^{2}}=\sqrt{\frac{25}{25}}=1
\end{array}
$$

## (D) Unit Vectors

- (1) Oxford 11E, p570, Q1,2,4,7
- (2) If $v=(3,4,12)$, find a unit vector in the same direction as $v$.
- (3) Oxford 11G, p579, Q4

