

Induction example #1	8
• Show that the sum of the first <i>n</i> odd integers is n^2 • Example: if $n = 5, 1+3+5+7+9 = 25 = 5^2$ • Formally, Show $\forall n P(n) \text{ where } P(n) = \sum_{i=1}^{n} 2i-1=n^2$	
• Base case: Show that P(1) is true	
$P(1) = \sum_{i=1}^{1} 2(i) - 1 = -1^{2}$ = 1 = -1	

Why speling is not so important...

13

I cdnuolt blveieetaht I cluod aulaclty uesdnatnrd waht I was rdanieg. The phaonmneal pweor of thehmuan mind. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the ltteers in a wrod are, the olny iprmoatnt tihng is taht thefrist and lsat ltteer be in the rghit pclae. The rset can be a taotl mses andyou can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn mnid deosnot raed ervey lteter by istlef, but the wrod as a wlohe. Amzanig huh? yaeh and I awlyas thought slpeling was ipmorantt.

Third induction example	20
• Show $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$	
• Base case: $n = 1$ $\sum_{i=1}^{1} i^2 = \frac{1(1+1)(2+1)}{6}$	
$1^2 = \frac{6}{6}$	
• Inductive hypothesis: assume $\sum_{i=1}^{4} i^2 = \frac{k(k+1)(2k+1)}{6}$	

Fourth induction example	25
• Show that <i>n</i> ! < <i>n</i> ⁿ for all <i>n</i> > 1	

Proving De Moivre's Theorem by Induction

De Moivre's theorem:

 $(\cos A + i \sin A)^{n} = (\cos nA + i \sin nA)$ Proof: For n = 1 $(\cos A + i \sin A)^{1} = (\cos 1A + i \sin 1A)$. True where n = 1Assume: true for n = k $(\cos A + i \sin A)^{k} = (\cos kA + i \sin kA).$

Further Examples - #1 & #2

- 1. Prove that $\sum_{r=1}^{n} r(r+1) = \frac{1}{3}n(n+1)(n+2)$
- 2. Prove that n(n+1)(n+2) is divisible by 6 for all n such that $n \in \mathbb{Z}^+$.

May 2005 Paper 1 TZ1

Using mathematical induction, prove that $\sum_{r=1}^{n} (r+1)2^{r-1} = n(2^{n})$ for $n \in Z^{+}$

IB Examples

May 2007 Paper 2 TZ1

Prove by induction that $12^{n} + 2(5^{n-1})$ is a multiple of 7 for $n \in \mathbb{Z}^{+}$

[Hint: For this one, you might want to call your multiples of 7 to be in the form of 7m for $m \in Z^+$]

Show that it must follow that the statement is true for the next value of n; that is, show statement must be true for n = k + 1: $\frac{d^{k+1}}{dx^{k+1}}(xe^{-x}) = (-1)^{k+1} [x - (k+1)]e^{-x}$ the (k+1) derivative = derivative of the kth derivative $\frac{d}{dx}\left[\frac{d^{\lambda}}{dx^{\lambda}}\left(xe^{-\lambda}\right)\right] = (-1)^{\lambda+1}\left[x-k-1\right]e^{-\lambda}$ $\frac{d}{dx} \Big[(-1)^{i} (x-k) e^{-i} \Big] = \text{RHS} \qquad \qquad \left[\text{ applying assumption } \frac{d^{i}}{dx^{i}} (xe^{-i}) = (-1)^{i} (x-k) e^{-i} \right]$ $(-1)^{k}\left[\frac{d}{dx}\left(xe^{-x}-ke^{-x}\right)\right]$ = RHS $(-1)^{i}\left[\frac{d}{dx}\left(xe^{-x}\right)+\frac{d}{dx}\left(-ke^{-x}\right)\right]=RHS$ (b) Suggest a formula for the *n*th derivative of xe^{-x} , that is $\frac{d}{dx}(xe^{-x})$, $n \in \mathbb{Z}^+$. $(-1)^{i}[(1-x)e^{-x}+ke^{-x}]=RHS$ $(-1)^{k} \left[(-1)(x-k-1)e^{-x} \right] = RHS$ $(-1)^{i}(-1)[(x-k-1)e^{-x}] = RHS$ $(-1)^{k+1}[x-k-1]e^{-x} = (-1)^{k+1}[x-k-1]e^{-x}$ Q.E.D.

1. (i) Show statement true for n=1: $\sum_{i=1}^{n} r(r+1) = \frac{1}{3}(1)(1+1)(1+2)$

that is, assume $\sum_{r=1}^{k} r(r+1) = \frac{1}{3}k(k+1)(k+2)$

sum of k + 1 terms = sum of k terms + value of term when r = k + 1

 $\frac{1}{3}(k+1)(k+2)(k+3) = \frac{1}{3}(k+1)(k+2)(k+3) \qquad Q.E.D.$ 3. The statement has been shown true for n = 1 and given it's true for some $n = k, n \in \mathbb{Z}^*$ it has been shown that if follows that it must also be true for n = k + 1; therefore, by mathematical induction the statement is true for all $n \in \mathbb{Z}^*$.

 $\sum_{k=1}^{k} r(r+1) + (k+1)(k+2) = \frac{1}{3}(k+1)(k+2)(k+3)$

 $(k+1)(k+2)\left[\frac{1}{3}k+1\right] = \frac{1}{3}(k+1)(k+2)(k+3)$

 $\sum_{i=1}^{k+1} r(r+1) = \frac{1}{3}(k+1)(k+2)(k+3)$

 $\sum_{i=1}^{1} r(r+1) = 1(1+1) = 2 \text{ and } \frac{1}{3}(1)(1+1)(1+2) = \frac{1}{3}(2)(3) = 2 \implies \text{statement true for } n=1$

(iii) Show that it must follow from this assumption that the statement is true for the next value of n; that is, show statement must be true for n = k+1:

 $\frac{1}{3}k(k+1)(k+2) + (k+1)(k+2) = \frac{1}{3}(k+1)(k+2)(k+3)$ [applying assumption from (ii)]

(ii) Assume statement is true for a specific value of $n \in \mathbb{Z}^+$; i.e. statement true for some n = k:

3. (a) Find the first three derivatives of xe^{-x} .

(c) Prove that your formula is true by mathematical induction.

IB Examples

May 2010 Paper 1 TZ1

- (a) Show that $\sin 2nx = \sin((2n+1)x)\cos x \cos((2n+1)x)\sin x$
- (b) Hence prove, by induction that

 $\cos x + \cos 3x + \cos 5x + \ldots + \cos((2n-1)x) = \frac{\sin 2nx}{2x\sin x}$

ia nemi	atical Induction: Example	38
≻Show that	at any postage of ≥ 8¢ can be	
	obtained using 3¢ and 5¢ stamps.	
➤First che	ck for a few particular values:	
8¢	= 3¢ + 5¢	
9¢	$= 3\phi + 3\phi + 3\phi$	
10¢ =	5¢ + 5¢	
11¢ =	5¢ + 3¢ + 3¢	
12¢ =	$3 \notin + 3 \notin + 3 \notin + 3 \notin$	
>How to g	eneralize this?	

- Let P(n) be the sentence "n cents postage can be obtained using 3¢ and 5¢ stamps".
- Want to show that "P(k) is true" implies "P(k+1) is true"
 - for any $k \ge 8^{\ell}$.
- 2 cases: 1) P(k) is true and the k cents contain at least one 5¢.
 2) P(k) is true and
 - the k cents do not contain any 5¢.

■Thus, we want to show that $(i)^*(k+1-i) + P(i) + P(k+1-i) = P(k+1)$ $P(i) = \frac{i^2 - i}{2}$	43
$P(k+1-i) = \frac{(k+1-i)(k+1-i-1)}{2} = \frac{k^2 + k - 2ki - i + i^2}{2}$	
$P(k+1) = \frac{(k+1)(k+1-1)}{2} = \frac{k^2 + k}{2}$	
$(i)^*(k+1-i) + P(i) + P(k+1-i) = P(k+1)$	
$ki+i-i^{2}+\frac{i^{2}-i}{2}+\frac{k^{2}+k-2ki-i-i^{2}}{2}=\frac{k^{2}+k}{2}$	
$2ki + 2i - 2i^{2} + i^{2} - i + k^{2} + k - 2ki - i + i^{2} = k^{2} + k$	
$k^2 + k = k^2 + k$	