

What did we show

Why speling is not so important...

Second induction example

I cdnuolt blveieetaht I cluod aulaclty uesdnatnrd waht I was rdanieg. The phaonmneal pweor of thehmuan mind. Aoccdrnig to a rscheearch at Cmabrigde Uinervtisy, it deosn't mttaer in waht oredr the Itteers in a wrod are, the olny iprmoatnt tihng is taht thefrist and Isat ltteer be in the rghit pclae. The rset can be a taotl mses andyou can sitll raed it wouthit a porbelm. Tihs is bcuseae the huamn mnid deosnot raed ervey Iteter by istlef, but the wrod as a wlohe. Amzanig huh? yaeh and I awlyas thought slpeling was ipmorantt.

Third induction example

- Inductive step: show

$\sum_{i=1}^{k+1} i^{2}$	$=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}$
$(k+1)^{2}+\sum_{i=1}^{k} i^{2}$	$=\frac{(k+1)(k+2)(2 k+3)}{6}$
$(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6}$	$=\frac{(k+1)(k+2)(2 k+3)}{6}$
$6(k+1)^{2}+k(k+1)(2 k+1)$	$=(k+1)(k+2)(2 k+3)$
$2 k^{3}+9 k^{2}+13 k+6$	$=2 k^{3}+9 k^{2}+13 k+6 \sum_{i=1}^{k} i^{2}=\frac{k(k+1)(2 k+1)}{6}$

Third induction again: what if your inductive hypothesis was wrong?

Third induction again: what if your inductive hypothesis was wrong?

- Show: $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+\sqrt{2})}{6}$
- Base case: $n=1$:
- But let's continue anyway...
- Inductive hypothesis: assume

Fourth induction example

- Show that $n!<n^{n}$ for all $n>1$
- Base case: $n=2$
$2!<2^{2}$
$2<4$
- Inductive hypothesis: assume k ! $<k^{k}$
- Inductive step: show that $(k+1)$! $<(k+1)^{k+1}$

Fourth induction example

- Show that $n!<n^{n}$ for all $n>1$
- Base case: $n=2$
$2!<2^{2}$
$2<4$
- Inductive hypothesis: assume k ! $<k^{k}$
- Inductive step: show that $(k+1)!<(k+1)^{k+1}$
$(k+1)!=(k+1) k!<(k+1) k^{k}<(k+1)(k+1)^{k}=(k+1)^{k+1}$

Proving De Moivre's Theorem by Induction
To Prove: True for $n=k+1$
$(\cos A+\mathrm{i} \sin A)^{k+1}=(\cos A+i \sin A)^{k}(\cos A+i \sin A)$
$=(\cos k A+i \sin k A)(\cos A+i \sin A) \quad \ldots$. Assumed.
$=\cos (k A+A)+i \sin (k A+A)$
$=\cos (k+1) A+i \sin (k+1) A$

True for where $n=1$
True for where $n=k+1$ and so true for where $n=2,3,4$ etc.

Proving De Moivre's Theorem by Induction

De Moivre's theorem:

$(\cos A+i \sin A)^{n}=(\cos n A+i \sin n A)$
Proof:
For $n=1$
$(\cos A+\mathrm{i} \sin A)^{1}=(\cos 1 A+i \sin 1 A)$. True where $n=1$
Assume: true for $\boldsymbol{n}=\boldsymbol{k}$
$(\cos A+\mathrm{i} \sin A)^{k}=(\cos k A+i \sin k A)$.


```
1. (i) Show statement true for }n=1: \sum\sumr(r+1)=\frac{1}{3}(1)(1+1)(1+2
    \sum 
    (ii) Assume statement is true for a specific value of }n\in\mp@subsup{Z}{}{+}\mathrm{ ; L.e, statement true for some n=k;
        that is, assume }\mp@subsup{\sum}{i=1}{t}r(r+1)=\frac{1}{3}k(k+1)(k+2
    (iii) Show that it must follow from this assumption that the statement is true for the next value of n
        hat is, show statement must be true for }n=k+1\mathrm{ :
            \sumr(r+1)=\frac{1}{3}(k+1)(k+2)(k+3)
        sum of k+1 terms - sum of k terms + value of term when r=k+1
            \sum}r(r+1)+(k+1)(k+2)=\frac{1}{3}(k+1)(k+2)(k+3
            \frac{1}{3}k(k+1)(k+2)+(k+1)(k+2)=\frac{1}{3}(k+1)(k+2)(k+3)\quad[applying assumption from (i)]
            (k+1)(k+2)[\frac{1}{3}k+1]=\frac{1}{3}(k+1)(k+2)(k+3)
            \frac{1}{3}}(k+1)(k+2)(k+3)=\frac{1}{3}(k+1)(k+2)(k+3)\quad\mathrm{ Q.E.D.
```

 The statement has been shown true for \(n=1\) and given it's true for some \(n=k, n \in Z^{\prime}\) it has
 been shown that it follows that it must also be true for \(n=k+1\); therefore, by mathematical
 induction the statement is truc for all \(n \in \mathbb{Z}^{*}\)

$+$

2. (i) Show statement true for $n=1: n(n+1)(n+2)=1(1+1)(1+2)=6$ and 6 is divisible by 6 , thus statement is true for $n=1$.
(ii) Assume statement is true for a specific value of $n \in \mathbb{Z}^{+}$; i.e. statement true for some $n=k$: that is, assume $k(k+1)(k+2)$ is divisible 6 ; which means that $k(k+1)(k+2)$ must be equal to a multiple of 6 ; i.e. $k(k+1)(k+2)=6 p$ where $p \in \mathbb{Z}^{+}$
(iii) Show that it must follow from this assumption that the statement is true for the next value of n; hat is, show statement must be true for $n=k+1$
need to show that $(k+1)(k+2)(k+3)$ is a multiple of 6
$k^{3}+6 k^{2}+11 k+6 \quad$ note: $\left.k(k+1)(k+2)=k^{3}+3 k^{2}+2 k\right]$
$\left(k^{3}+3 k^{2}+2 k\right)+3 k^{2}+9 k+6$
$6 p+3(k+1)(k+2)$
[applying assumption from (ii)]
$(k+1)(k+2)$ is product of two consecutive integers - thus, one factor is even (a multiple of 2); therefore the product $(k+1)(k+2)$ must be a multiple of 2; i.e. $(k+1)(k+2)=2 q, q \in \mathbb{Z}^{+}$
$6 p+3(k+1)(k+2)=6 p+3 \cdot 2 q=6 p+6 q=6(p+q) \quad$ Q.E.D.
The statement has been shown true for $n=1$ and given true for some $n=k, n \in \mathbb{Z}^{+}$it's been shown it follows
that it must also be true for $n=k+1$; therefore, by mathematical induction the statement is true for all $n \in \mathbb{Z}$.

Further Examples - \#3
3. (a) Find the first three derivatives of $x e^{-x}$.
(b) Suggest a formula for the nth derivative of $x e^{-x}$, that is $\frac{d}{d x}\left(x e^{-x}\right), n \in \mathbb{Z}^{+}$.
(c) Prove that your formula is true by mathematical induction.

Show hat it must follow that the state
tatement must be true for $n=k+1$:
$\frac{d^{t-1}}{d k^{-1}}\left(x e^{-x}\right)=(-1)^{t-1}[x-(k+1)] e^{-k}$
($k+1$)derivaive - derivaive of the kth derivative
$\left.\left.\frac{d}{d x}\left[\frac{d d^{t}}{d d^{x}}\left(x e^{-2}\right)\right]=(-1)^{t-1} \right\rvert\, x-k-1\right) e^{-t}$
$\frac{d}{d x}\left[(-1)^{4}(x-k) e^{-}\right]=$RHS $\quad\left[\right.$ Wpllying anamption $\left.\left.\frac{d^{4}}{\frac{\alpha^{1}}{}\left(x^{-2}\right.}\right)=(-1)^{t}(x-k) e^{-1}\right]$
$(-1)\left[\frac{d}{d x}\left(x e^{-3}-k e^{-1}\right)\right]=$ RHS
$(-1)^{2}\left[\frac{d}{d x}\left(x e^{-}\right)+\frac{d}{d x}\left(-k e^{-1}\right)\right]-$ RHS
$(-1)^{4}\left[(1-x) e^{-x}+k e^{-}\right]$-RHS
$(-1)^{4}\left[(-1)(x-k-1) e^{-x}\right]=$ RHS
$(-1)^{\prime}(-1)\left[(x-k-1) e^{-}\right]=$RHS
$(-1)^{2+1}[x-k-1] e^{-x}=(-1)^{2+1}[x-k-1] e^{-k}$
QE.D.

The statenent has been sbown true for $n=1$ and given it's stre for some $n=k, n \in Z^{+}$it has
been shown that it follows that it must also be true for in $n=k+1$; therforere, by mathematical
induction the statement is true for all $n \in \mathbb{Z}$.

IB Examples

Marhernarical Induction: Exarnple

May 2010 Paper 1 TZ1

(a) Show that $\sin 2 n x=\sin ((2 n+1) x) \cos x-\cos ((2 n+1) x) \sin x$
-Show that any postage of $\geq 8 \&$ can be
(b) Hence prove, by induction that
$\cos x+\cos 3 x+\cos 5 x+\ldots+\cos ((2 n-1) x)=\frac{\sin 2 n x}{2 x \sin x}$
-First check for a few particular values:
$8 \phi=3 \psi+5 \psi$
$9 t=3 t+3 t+3 t$
$10 \phi=5 \phi+5 \phi$
$11 t=\quad 5 t+3 t+3 t$
$12 \phi=3 \phi+3 \phi+3 \phi+3 \phi$
$>$ How to generalize this?

Marhernarical Induction: Exairnple

Opening Exercise - Solution

- We will show it is true for a pile of k stones, and show it is true for $k+1$ stones
- So $\mathrm{P}(\mathrm{k})$ means that it is true for k stones
- Base case: $n=1$
- No splits necessary, so the sum of the products $=0$
- $1^{*}(1-1) / 2=0$
- Base case proven

