• • •

LESSON 77 - Geometric Representations of Complex Numbers

Argand Diagram Modulus and Argument Polar form

Argand Diagram

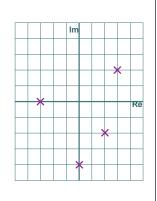
OComplex numbers can be shown Geometrically on an Argand diagram
OThe real part of the number is represented on the x-axis and the imaginary part on the y.

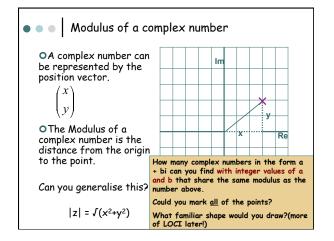
•-3

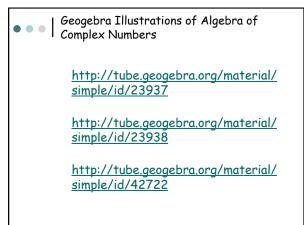
•-4i

●3 + 2i

•2 - 2i







Modulus questions

Find

a) |3 + 4i|

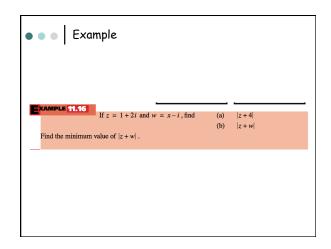
b) |5 - 12i|

c) |6 - 8i|

d) |-24 - 10i|

Find the distance between the first two complex numbers above.

It may help to sketch a diagram

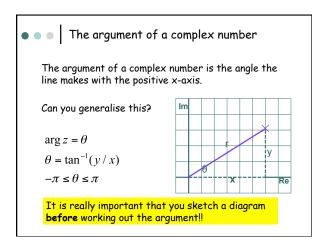


Example - Solution

(a) First, we need to determine the complex number z+4: z+4 = (1+2i)+4=5+2i.Then we have, $|5+2i|=\sqrt{25+4}=\sqrt{29}$ i (b) First, we need to determine the complex number z+w: $z+w=(1+2i)+(x-i)=(x+1)+i \ \therefore |(x+1)+i|=\sqrt{(x+1)^2+1}.$ $=\sqrt{x^2+2x+2}$ 395

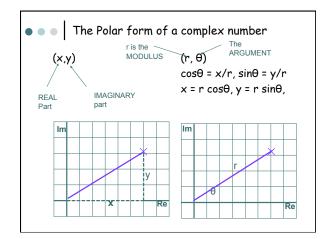
MATHEMATICS - Higher Level (Core)

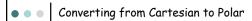
Now, $\sqrt{x^2+2x+2}=\sqrt{(x^2+2x+1)+1}=\sqrt{(x+1)^2+1}$. The minimum value will occur when $(x+1)^2+1$ is a minimum. But, the minimum value of $(x+1)^2+1$ is 1, therefore the minimum of $\sqrt{(x+1)^2+1}$ is $\sqrt{1}=1$.



- The argument of a complex number
 - O Calculate the modulus and argument of the following complex numbers. (Hint, it helps to draw a diagram)
 - 1) 3 + 4i
 - 2) 5 5i
 - 3) -2√3 + 2i

- • The Polar form of a complex number
 - So far we have plotted the position of a complex number on the Argand diagram by going horizontally on the real axis and vertically on the imaginary.
 - footnotesize This is just like plotting co-ordinates on an x,y axis
 - O However it is also possible to locate the position of a complex number by the distance travelled from the origin (pole), and the angle turned through from the positive x-axis.
 - These are called "Polar coordinates"

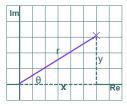




$$(x,y) = (r,\theta) = (\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x})$$

Convert the following from Cartesian to Polar

- i) (1,1) =
- ii) (-√3,1) =
- iii) (-4,-4√3) =



Converting from Cartesian to Polar

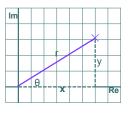
$$(x,y) = (r,\theta) = (\sqrt{x^2 + y^2}, \tan^{-1} \frac{y}{x})$$

Convert the following from Cartesian to Polar

i)
$$(1,1) = (\sqrt{2}, \pi/4)$$

ii)
$$(-\sqrt{3},1) = (2,5\pi/6)$$

iii)
$$(-4,-4\sqrt{3}) = (8,-2\pi/3)$$



Converting from Polar to Cartesian

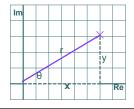
$$(r,\theta) = (x,y)(r\cos\theta,r\sin\theta)$$

Convert the following from Polar to Cartesian

i)
$$(4,\pi/3) =$$

ii)
$$(3\sqrt{2}, -\pi/4) =$$

iii)
$$(6\sqrt{2},3\pi/4) =$$



Converting from Polar to Cartesian

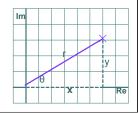
$$(r,\theta) = (x,y)(r\cos\theta,r\sin\theta)$$

Convert the following from Polar to Cartesian

i)
$$(4,\pi/3) = (2,2\sqrt{3})$$

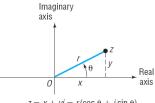
ii)
$$(3\sqrt{2},-\pi/4) = (3,-3)$$

iii)
$$(6\sqrt{2},3\pi/4) = (-6,6)$$



If $r \ge 0$ and $0 \le \theta < 2\pi$, the complex number z = x + yi may be written in **polar form** as

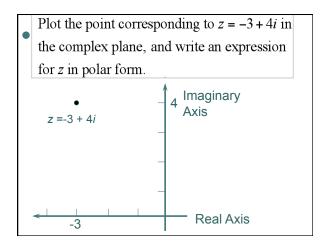
$$z = x + yi = (r\cos\theta) + (r\sin\theta)i = r(\cos\theta + i\sin\theta)$$
 (4)



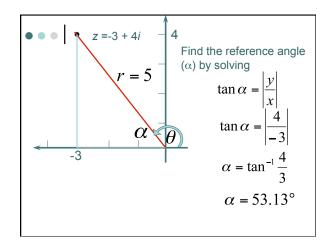
$$z = x + yi = r(\cos \theta + i \sin \theta),$$

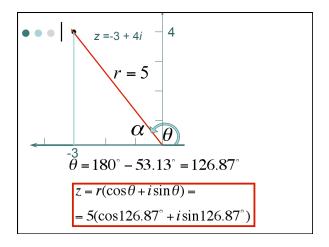
$$r \ge 0, \ 0 \le \theta < 2\pi$$

• Plot the point corresponding to z = -3 + 4i in the complex plane, and write an expression for z in polar form.



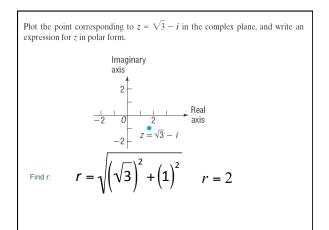
z = -3 + 4i is in Quadrant II x = -3 and y = 4 $r = \sqrt{(-3)^2 + 4^2} = \sqrt{25} = 5$

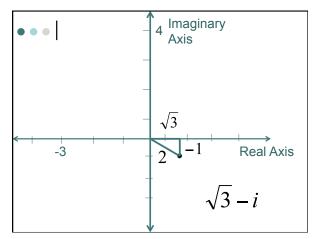


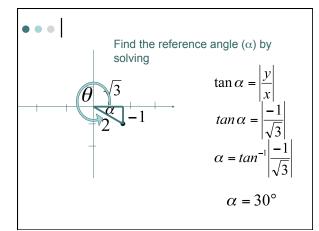


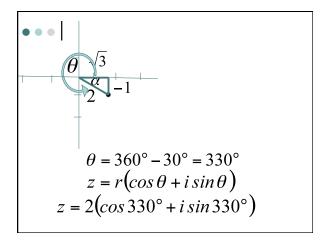
• • •

Plot the point corresponding to $z = \sqrt{3} - i$ in the complex plane, and write an expression for z in polar form.









• • Write in standard (rectangular) form.

$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

Write in standard (rectangular) form.
$$2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)$$

$$\cos\frac{5\pi}{6} = -\frac{\sqrt{3}}{2} \qquad \sin\frac{5\pi}{6} = \frac{1}{2}$$

$$2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) \qquad = -\sqrt{3} + i$$

Example:

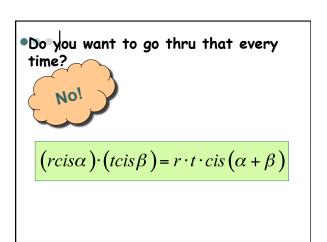
Convert z = 3 cis 55° to rectangular form.

Convert z = -2 - 3i to polar form.

Example:

What is the absolute value of the following complex numbers: z = 3 + 2i $z = 4 cis \frac{2\pi}{3}$

Multiply: (3cis165°)(4cis45°)



• • •

Multiply: $(4cis25^{\circ})(6cis35^{\circ})$

• • •

Divide:

• • Properties of modulus

 $|Z_1.Z_2| = |Z_1|.|Z_2|$ $|Z^n| = |Z|^n$

 $|z.\overline{z}| = |z|^2$ Proof: $z = a + ib, z\overline{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2$

 $\left|z_{_{1}}+z_{_{2}}\right| \leq \left|z_{_{1}}\right| + \left|z_{_{2}}\right| \qquad \left|z_{_{1}}+z_{_{2}}\right| \geq \left\|z_{_{1}}\right| - \left|z_{_{2}}\right| \quad \text{(Triangle inequality)}$

 $|z_1 - z_2| \ge ||z_1| - |z_2|| \qquad |z_1 - z_2| \le |z_1| + |z_2|$

 $|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2(|z_1|^2 + |z_2|^2)$

Properties of Argument

 $Arg(z_1.z_2) = Arg(z_1) + Arg(z_2)$

$$Arg\left(\frac{Z_1}{Z_2}\right) = Arg\left(Z_1\right) - Arg\left(Z_2\right)$$

 $Arg(z_1.z_2....z_n) = Arg(z_1) + Arg(z_2) + + Arg(z_n)$

$$Arg(\overline{z}) = -Arg(z), Arg(\frac{1}{z}) = -Arg(z)$$

Arg(purely real) = 0 or π or $2n\pi$ and vice versa

 $\mbox{Arg(purely imaginary)} = \frac{\pi}{2} \mbox{ or } -\frac{\pi}{2} \mbox{ or } \left(2n+1\right) \frac{\pi}{2} \quad \mbox{and vice } \\ \mbox{versa}$