

TAYLOR SERIES

For the special case $a=0$, the Taylor series becomes:

$$
\begin{aligned}
f(x) & =\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} \\
& =f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots
\end{aligned}
$$

TAYLOR SERIES

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
&=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2} \\
&+\frac{f^{\prime \prime \prime}(a)}{3!}(x-a)^{3}+\cdots
\end{aligned}
$$

MACLAURIN SERIES

This case arises frequently enough that it is given the special name Maclaurin series.

BINOMIAL SERIES
Example 8
Thus, the Maclaurin series of $f(x)=(1+x)^{k}$ is:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{k(k-1) \cdots(k-n+1)}{n!} x^{n}
$$

- This series is called the binomial series.

TAYLOR \& MACLAURIN SERIES Example 8

Arranging our work in columns, we have:

$f(x)=(1+x)^{k}$	$f(0)=1$
$f^{\prime}(x)=k(1+x)^{k-1}$	$f^{\prime}(0)=k$
$f^{\prime \prime}(x)=k(k-1)(1+x)^{k-2}$	$f^{\prime \prime}(0)=k(k-1)$
$f^{\prime \prime \prime}(x)=k(k-1)(k-2)(1+x)^{k-3}$	$f^{\prime \prime \prime}(0)=k(k-1)(k-2)$
\cdot	\cdot
\cdot	\cdot
$f^{(n)}=k(k-1) \cdots(k-n+1)(1+x)^{k-n}$	$f^{(n)}(0)=k(k-1) \cdots(k-n+1)$

TAYLOR \& MACLAURIN SERIES Example 8

If its nth term is a_{n}, then
$\left|\frac{a_{n+1}}{a_{n}}\right|$
$=\left|\frac{k(k-1) \cdots(k-n+1)(k-n) x^{n+1}}{(n+1)!} \cdot \frac{n!}{k(k-1) \cdots(k-n+1) x^{n}}\right|$
$=\frac{|k-n|}{n+1}|x|=\frac{\left|1-\frac{k}{n}\right|}{1+\frac{1}{n}}|x| \rightarrow|x| \quad$ as $n \rightarrow \infty$

TAYLOR \& MACLAURIN SERIES Example 8

Therefore, by the Ratio Test, the binomial series converges if $|x|<1$ and diverges if $|x|>1$.

Theorem 17
If k is any real number and $|x|<1$, then

$$
\begin{aligned}
(1+x)^{k}= & \sum_{n=0}^{\infty}\binom{k}{n} x^{n} \\
= & 1+k x+\frac{k(k-1)}{2!} x^{2} \\
& +\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots
\end{aligned}
$$

BINOMIAL COEFFICIENTS.

The traditional notation for the coefficients in the binomial series is:

$$
\binom{k}{n}=\frac{k(k-1)(k-2) \cdots(k-n+1)}{n!}
$$

- These numbers are called the binomial coefficients.

TAYLOR \& MACLAURIN SERIES

Though the binomial series always converges when $|x|<1$, the question of whether or not it converges at the endpoints, ± 1, depends on the value of k.

- It turns out that the series converges at 1
if $-1<k \leq 0$ and at both endpoints if $k \geq 0$.

TAYLOR \& MACLAURIN SERIES Example 9

Find the Maclaurin series for the function

$$
f(x)=\frac{1}{\sqrt{4-x}}
$$

and its radius of convergence.

TAYLOR \& MACLAURIN SERIES Example 9

We write $f(x)$ in a form where we can use the binomial series:

$$
\begin{aligned}
\frac{1}{\sqrt{4-x}} & =\frac{1}{\sqrt{4\left(1-\frac{x}{4}\right)}} \\
& =\frac{1}{2 \sqrt{1-\frac{x}{4}}}=\frac{1}{2}\left(1-\frac{x}{4}\right)^{-1 / 2}
\end{aligned}
$$

TAYLOR \& MACLAURIN SERIES
 Example 9

Using the binomial series with $k=-1 / 2$ and with x replaced by $-x / 4$, we have:
$\frac{1}{\sqrt{4-x}}$
$=\frac{1}{2}\left(1-\frac{x}{4}\right)^{-1 / 2}$
$=\frac{1}{2} \sum_{n=0}^{\infty}\binom{-\frac{1}{2}}{n}\left(-\frac{x}{4}\right)^{n}$

TAYLOR \& MACLAURIN SERIES Example 9

$=\frac{1}{2}\left[1+\left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2!}\left(-\frac{x}{4}\right)^{2}\right.$
$+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{3!}\left(-\frac{x}{4}\right)^{3}$
$\left.+\cdots+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdots\left(-\frac{1}{2}-n+1\right)}{n!}\left(-\frac{x}{4}\right)^{n}+\cdots\right]$

$$
\begin{aligned}
& \text { TAYLOR \& MACLAURIN SERIES Example } 9 \\
& =\frac{1}{2}\left[1+\frac{1}{8} x+\frac{1 \cdot 3}{2!8^{2}} x^{2}+\frac{1 \cdot 3 \cdot 5}{3!8^{3}} x^{3}+\right. \\
& \left.\quad \cdots+\frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot(2 n-1)}{n!8^{n}} x^{n}+\cdots\right]
\end{aligned}
$$

- We know that this series converges when

$$
|-x / 4|<1 \text {, that is, }|x|<4 \text {. }
$$

- So, the radius of convergence is $R=4$.

Further Examples

- Use the binomial series to expand the function as a power function. State the radius of convergence.
(a) $y=\frac{1}{(1+x)^{2}}$
(b) $y=\frac{1}{\sqrt{2-x}}$

SUMMARY

$$
\begin{aligned}
(1+x)^{k}=\sum_{n=0}^{\infty}\binom{k}{n} & x^{n}=1+k x+\frac{k(k-1)}{2!} x^{2} \\
& +\frac{k(k-1)(k-2)}{3!} x^{3}+\cdots \quad R=1
\end{aligned}
$$

Further Examples

- Use the binomial series to expand the function as a power function. State the radius of convergence.
(a) $y=\sqrt{1+x}$
(b) $y=\frac{1}{(1+x)^{4}}$
(c) $y=\frac{1}{(2+x)^{3}}$
(d) $y=\sqrt[3]{(1-x)^{2}}$

Lagrange Form (for error in Taylor Polynomials
Similar to the truncation error for an alternating series, finding the error using Taylor's Formula for the remainder is essentially given by the next term in the series:
$R_{n}(x)=\frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1}, a \leq t \leq x$

EXAMPLE \#1

- Approximate the value of $\ln (1.1)$ using a third degree Taylor polynomial and determine the maximum error in this approximation
- Choose $f(x)$, choose "center", take successive derivatives, evaluate
- To evaluate $R_{3}(1.1)$, choose a value of t that maximizes the error $(1 \leq t \leq 1.10)$

EXAMPLE \#2

- Approximate $\cos (0.1)$ using a $4^{\text {th }}$ degree Taylor polynomial and find the associated

LaGrange remainder, or error bound

- Choose f(x), choose "center", take successive derivatives, evaluate
- To evaluate $R_{4}(1.1)$, choose a value of $\sin (t)$ or $\cos (\mathrm{t})$ that maximizes the error $(0 \leq \mathrm{t} \leq \mathrm{x})$

Page 160, Oxford Text Q1-10

