

Opening Examples

- Determine the sums of the following series:
(a) $\mathrm{S}_{\infty}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots$.
(b) $\mathrm{S}_{\infty}=2+\frac{4}{3}+\frac{8}{9}+\frac{16}{27}+\ldots \ldots$
(c) $S_{\infty}=1-\frac{1}{3}+\frac{1}{9}-\frac{1}{27}+\ldots \ldots$
(d) $\mathrm{S}_{\infty}=1+x+x^{2}+x^{3}+\ldots \ldots$.

Formulas! Consider an (already familiar) Example

Our old friend the geometric series!

$$
\mathrm{S}_{\infty}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots \ldots
$$

We know it converges to $\mathrm{S}_{\infty}=\frac{a}{1-r}=\frac{1}{1-\left(\frac{1}{2}\right)}=2$

Formulas! Consider an (already familiar) Example

And our NEW friend, also a geometric series!

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+\ldots
$$

And just exactly HOW the HECK is this a geometric series?

Formulas! Consider an (already familiar) Example

Our old friend the geometric series since $r=x$!

$$
1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+\ldots
$$

We know it converges to $\quad \frac{1}{1-x}$ whenever $|\mathrm{x}|<1$
and diverges elsewhere.

That is, $f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ for all x in $(-1,1)$.

Our first formula!

$f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$ for all x in $(-1,1)$.

This plot shows the $10^{\text {th }}, 12^{\text {th }}, 13^{\text {th }}$, and $15^{\text {th }}$ partial sums of this series.

We see the expected convergence on a "balanced" interval about $x=0$.

Near $x=1$, the partial sums "blow up" giving us the asymptote we expect to see there.

Near $x=-1$ the even and odd partial sums go opposite directions, preventing any convergence to the left of $x=-1$.

Example \#1

- Express $f(x)=\frac{1}{1+x}$ as a power series and find its interval of convergence

Example \#2
•Express $f(x)=\frac{1}{5+x}$ as a power series and find its interval
of convergence
EXAMPLE 2: Express $\frac{1}{5+x}$ as a power series and find the interval of convergence.
Solution: We have
$\frac{1}{5+x}=\frac{\frac{1}{5}}{1+\frac{x}{5}}=\frac{1}{5} \cdot \frac{1}{1+\frac{x}{5}}=\frac{1}{5} \cdot \frac{1}{1-\left(-\frac{x}{5}\right)}$
Putting $u=-x / 5$ in (1), we get
$\frac{1}{1-\left(-\frac{x}{5}\right)}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{5^{n}} \Longrightarrow \frac{1}{5} \cdot \frac{1}{1-\left(-\frac{x}{5}\right)}=\frac{1}{5} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{5^{n}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{5^{n+1}}$
Therefore

$$
\frac{1}{5+x}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{5^{n+1}}
$$

with the interval of convergence
$\left.\left|-\frac{x}{5}\right|<1 \Rightarrow\left|\frac{x}{5}\right|<1 \Rightarrow| | \right\rvert\,<5 \Rightarrow[\mid-5,5]$

Example \#3

- Express $f(x)=\frac{1}{1+x^{2}}$ as a power series and find its interval of convergence

Example \#5

- Express $f(x)=\frac{x^{5}}{7-9 x^{3}}$ as a power series and find its interval of convergence

$$
\begin{aligned}
& \text { Find a geometric power series for the function: } f(x)=\frac{3}{4-x} \\
& \sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r} \\
& \text { We write } \frac{3}{4-x} \text { in the form } \frac{a}{1-r} \text { and identify } a \text { and } r \\
& \text { Make this } 1 \\
& \text { Divide numerator and denominator by } 4 \\
& \frac{3}{4-x}=\frac{\frac{3}{4}}{\frac{4}{4}-\frac{x}{4}}=\frac{3 / 4}{1-x / 4} \quad \mathrm{a}=3 / 4 \quad \mathrm{r}=\mathrm{x} / 4 \\
& f(x)=\sum_{n=0}^{\infty} a r^{n}=\sum_{n=0}^{\infty} \frac{3}{4}\left(\frac{x}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{3 x^{n}}{4^{n+1}}=\frac{3}{4}+\frac{3}{16} x+\frac{3}{64} x^{2}+\ldots \cdot \frac{3 x^{n}}{4^{n+1}} \ldots . .
\end{aligned}
$$

Find a geometric power series for the function: $f(x)=\frac{3}{4-x}$

$$
f(x)=\sum_{n=0}^{\infty} \frac{3 x^{n}}{4^{n+1}}=\frac{3}{4}+\frac{3}{16} x+\frac{3}{64} x^{2}+\ldots \cdot \frac{3 x^{n}}{4^{n+1}} \ldots . .
$$

Let us obtain the interval of convergence for this power series.
$\left|\frac{a_{n+1}}{a_{n}}\right|=\left|\frac{3 x^{n+1}}{4^{n+2}} \cdot \frac{4^{n+1}}{3 x^{n}}\right|=\left|\frac{x}{4}\right| \quad$ The series converges for $\left|\frac{x}{4}\right|<1$
$-4<x<4$
Watch the graph of $f(x)$ and the graph of the first four terms of the power series.
The convergence of the two on $(-4,4)$ is obvious.
Example \#7
•Express $f(x)=\frac{3}{4-x}$ as a power series centered at $\mathrm{x}=-2$
and find its interval of convergence

Find a geometric power series centered at $\mathbf{c}=-2$ for the function $f(x)=\frac{3}{4-x}$ The power series centered at \mathbf{c} is: $\sum_{n=0}^{\infty} a(r-c)^{n}=\frac{a}{1-(r-c)}$ We write $\frac{3}{4-x}$ in the form $\frac{a}{1-(r-c)}=\frac{3}{4-[x-(-2)]+2}=\frac{3}{6-(x+2)}$ Divide numerator and denominator by 6 Make this 1 $\left\{\begin{array}{l} \frac{\frac{3}{6}}{\frac{6}{6}-\frac{(x+2)}{6}}=\frac{1 / 2}{1-(x+2) / 6} \quad \mathrm{a}=1 / 2 \quad \mathrm{r}-\mathrm{c}=(\mathrm{x}+2) / 6 \\ f(x)=\sum_{n=0}^{\infty} a(r-c)^{n}=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{x+2}{6}\right)^{n}=\sum_{n=0}^{\infty} \frac{(x+2)^{n}}{2 \cdot 6^{n}} \\ =\frac{1}{2}+\frac{x+2}{2 \cdot 6}+\frac{(x+2)^{2}}{2 \cdot 6^{2}}+\ldots \ldots \cdot \frac{(x+2)^{n}}{2 \cdot 6^{n}} \ldots \end{array}\right.$

Example \#8
•Express $f(x)=\frac{3}{2 x-1}$ as a power series centered at $\mathrm{x}=2$
and find its interval of convergence

$\begin{aligned} & \text { Find a geometric power series } \\ & \text { centered at } \mathrm{c}=2 \text { for the function: }\end{aligned} \quad f(x)=\frac{3}{2 x-1}$ We write $\frac{3}{2 x-1}$ in the standard form $\frac{a}{1-r}$ $\frac{3}{2 x-1}=\frac{3}{-1+2 x}=\frac{3}{-1+2(x-2)+4}$
Since $\mathbf{c}=2$, this \mathbf{x} has to become $\mathbf{x}-2$$=\frac{3}{3+2(x-2)}$ Add 4 to compensate for subtracting 4
Divide by 3 to make this $=\frac{3 / 3}{\frac{3}{3}+\frac{2}{3}(x-2)}=\frac{1}{1+\frac{2}{3}(x-2)}$
Make this - to bring it to standard form $1-\left(-\frac{2}{3}(x-2)\right)$

$\begin{aligned} & \text { Find a geometric power series } \\ & \text { centered at } \mathrm{c}=2 \text { for the function: }\end{aligned} \quad f(x)=\frac{3}{2 x-1}$

$$
\begin{aligned}
& f(x)=\frac{3}{2 x-1}=\frac{1}{1-\left(-\frac{2}{3}(x-2)\right)} \quad a=1 \quad r-c=-\frac{2}{3}(x-2) \\
& f(x)=\sum_{n=0}^{\infty} a(r-c)^{n}=\sum_{n=0}^{\infty} 1\left[-\frac{2}{3}(x-2)\right]^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{2^{n}(x-2)^{n}}{3^{n}} \\
& =1-\frac{2(x-2)}{3}+\frac{2^{2}(x-2)^{2}}{3^{2}}-\frac{2^{3}(x-2)^{3}}{3^{3}}+\ldots \ldots . .+(-1)^{n} \frac{2^{n}(x-2)^{n}}{3^{n}} \ldots \ldots \\
& \text { This series converges for: } \\
& |(x-2)|<\frac{3}{2} \\
& -\frac{3}{2}<(x-2)<\frac{3}{2} \quad \frac{1}{2}<x<\frac{7}{2}
\end{aligned}
$$

Example \#9

- Express $f(x)=\frac{4}{4+x^{2}}$ as a power series and find its interval of convergence

The general form of the series is

$$
1+2 x+3 x^{2}+4 x^{3}+\ldots=\sum_{n=0}^{\infty}(n+1) x^{n}
$$

The ratio test limit:
$\lim _{n \rightarrow \infty} \frac{(n+2)|x|^{n+1}}{(n+1)|x|^{n}}=|x| \lim _{n \rightarrow \infty} \frac{(n+2)}{(n+1)}=|x|<1$
So the "derivative" series also converges on $(-1,1)$. We showed that it diverges at the endpoints.

Our first formula!

$$
f(x)=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \text { for all } x \text { in }(-1,1)
$$

What else can we observe?
Clearly this function is both continuous and differentiable on its interval of convergence.

It is very tempting to say that the derivative for $f(x)=1+x+x^{2}+x^{3}+\ldots$
should be $1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\ldots$
But is it? For that matter, does this series even converge? And if it does converge, what does it converge to?

Differentiating Power Series
Does it converge to $\longrightarrow \frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}} ?$

$6^{\text {th }}$ partial sum

$10^{\text {th }}$ partial sum

The green graph is the partial sum, the red graph is $\frac{1}{(1-x)^{2}}$

This graph suggests a general principle:

Theorem: (Derivatives and Antiderivatives of Power Series)

Let $S(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+a_{4}\left(x-x_{0}\right)^{4}+\ldots$ be a power series with radius of convergence $R>0$.

And let $D(x)=a_{1}+2 a_{2}\left(x-x_{0}\right)+3 a_{3}\left(x-x_{0}\right)^{2}+4 a_{4}\left(x-x_{0}\right)^{3}+\ldots$
And $A(x)=a_{0}\left(x-x_{0}\right)+\frac{a_{1}}{2}\left(x-x_{0}\right)^{2}+\frac{a_{2}}{3}\left(x-x_{0}\right)^{3}+\frac{a_{3}}{4}\left(x-x_{0}\right)^{4}+\ldots$
Then

- Both D and A converge with radius of convergence R.
- On the interval $\left(x_{0}-R, x_{0}+R\right) \quad S^{\prime}(x)=D(x)$.
- On the interval $\left(x_{0}-R, x_{0}+R\right) \quad A^{\prime}(x)=S(x)$.

Or to put it more succinctly, if a little less precisely,
Theorem: (Derivatives and Antiderivatives of Power Series)
If $S(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)^{2}+a_{3}\left(x-x_{0}\right)^{3}+a_{4}\left(x-x_{0}\right)^{4}+\ldots$
is a power series with radius of convergence $R>0$.
Then we can differentiate and antidifferentiate S. Moreover,
$S^{\prime}(x)=a_{1}+2 a_{2}\left(x-x_{0}\right)+3 a_{3}\left(x-x_{0}\right)^{2}+4 a_{4}\left(x-x_{0}\right)^{3}+\ldots$
And $\int S(x) d x=a_{0}\left(x-x_{0}\right)+\frac{a_{1}}{2}\left(x-x_{0}\right)^{2}+\frac{a_{2}}{3}\left(x-x_{0}\right)^{3}+\frac{a_{3}}{4}\left(x-x_{0}\right)^{4}+\ldots+C$

These all have the same radius of convergence.

Lest we lose the forest for the trees. . .
Let us consider again our original example from SLIDE \#4

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}}(x-3)^{k}
$$

Even though we can't find a formula for f, we can still differentiate and antidifferentiate it. What do we get?

$$
\begin{gathered}
f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{k}{2^{k} k^{2}}(x-3)^{k-1}=\sum_{k=1}^{\infty} \frac{1}{2^{k} k}(x-3)^{k-1} \\
\int f(x) d x=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}} \frac{(x-3)^{k+1}}{k+1}+C=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}(k+1)}(x-3)^{k+1}+C
\end{gathered}
$$

Lest we lose the forest for the trees. . . Interval of Conv. $f(x)=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}}(x-3)^{k} . \quad \leftarrow \quad \leftarrow \quad \begin{array}{lll}1 & 3 & 5\end{array}$ $f^{\prime}(x)=\sum_{k=1}^{\infty} \frac{k}{2^{k} k^{2}}(x-3)^{k-1}=\sum_{k=1}^{\infty} \frac{1}{2^{k} k}(x-3)^{k-1}$

What is the radius of convergence?

$\int f(x) d x=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}} \frac{(x-3)^{k+1}}{k+1}+C=\sum_{k=1}^{\infty} \frac{1}{2^{k} k^{2}(k+1)}(x-3)^{k+1}+C$
What is the radius of convergence?

$$
\leftarrow-\longrightarrow
$$

Example \#11

- Express $f(x)=\ln (1+x)$ as a power series and find its interval
of convergence

Example \#12

- Express $f(x)=\ln \left(1-x^{2}\right)$ as a power series and find its interval of convergence

Find a geometric power series centered at $\mathrm{c}=0$ for the function: $f(x)=\ln \left(1-x^{2}\right)=\int \frac{1}{1+x} d x-\int \frac{1}{1-x} d x$ We obtain power series for $1 /(1+x)$ and integrate it Then integrate the power series for $1 /(1-x)$ and combine both. $\begin{aligned} & \frac{1}{1+x}=\frac{1}{1-(-x)}=\sum_{n=0}^{\infty} 1(-x)^{n}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \\ & \int \frac{1}{1+x} d x=\sum_{n=0}^{\infty} \int(-1)^{n} x^{n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c_{1} \\ & \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n} \\ & \int \frac{1}{1-x} d x=\sum_{n=0}^{\infty} \int x^{n} d x=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}+c_{2} \end{aligned}$

Example \#12

- Express $f(x)=\ln \left(1-x^{2}\right)$ as a power series and find its
interval of convergence

$$
\left.\begin{array}{l}
\text { Find a geometric power series } \quad f(x)=\ln \left(1-x^{2}\right)=\int \frac{1}{1+x} d x-\int \frac{1}{1-x} d x \\
\text { centered at } \mathrm{c}=0 \text { for the function: } \\
\begin{array}{rl}
\int \frac{1}{1+x} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c_{1} \quad \int \frac{1}{1-x} d x=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}+c_{2} \\
f(x)=\ln \left(1-x^{2}\right) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{n+1}+c_{1}-\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}+c_{2} \\
& =\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1}\left[(-1)^{n}-1\right]+c=-\frac{2 x^{2}}{2}-\frac{2 x^{4}}{4}-\frac{2 x^{6}}{6}-\ldots \ldots+c \\
& =\sum_{n=0}^{\infty} \frac{-2 x^{2 n+2}}{2 n+2}+c=\sum_{n=0}^{\infty} \frac{(-1) x^{2 n+2}}{n+1}+c \\
\ln \left(1-x^{2}\right) & =\sum_{n=0}^{\infty} \frac{(-1) x^{2 n+2}}{n+1}+c \quad \\
\ln \left(1-x^{2}\right) & =-\sum_{n=0}^{\infty} \frac{x^{2 n+2}}{n+1}
\end{array} \quad \mathbf{0}=\mathbf{0}+\mathbf{c} \quad \mathbf{c}=0, \text { we have }
\end{array}\right] .
$$

Example \#13
•Express $f(x)=\ln \left(1+x^{2}\right)$ as a power series and find its
interval of convergence

$$
\begin{aligned}
& \text { Find a geometric power series centered at } \mathrm{c}=0 \text { for } \mathrm{f}(\mathrm{x})=\ln \left(\mathrm{x}^{2}+1\right) \\
& \frac{d}{d x} \ln \left(x^{2}+1\right)=\frac{2 x}{x^{2}+1} \quad \begin{array}{l}
\text { We obtain the power series } \\
\text { for this and integrate. }
\end{array} \\
& \begin{aligned}
\frac{2 x}{x^{2}+1}=x & \cdot \frac{2}{1-\left(-x^{2}\right)}=x \sum_{n=0}^{\infty} 2(-1)^{n} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} 2 x^{2 n+1} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{2 x^{2 n+2}}{2(n+1)}+c \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1}+c
\end{aligned} \\
& \begin{aligned}
& \text { When } \mathbf{x}=0, \text { we have } \\
& \ln \left(x^{2}+1\right)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+2}}{n+1} \quad 0=0+\mathbf{c} \quad \mathbf{c}=0
\end{aligned}
\end{aligned}
$$

