

OBJECTIVES

- (a) How do we estimating Truncation Errors & how do we make use of that idea?
- (b) Deciding on which method to use when testing series for convergence.....

EXPLORATION TRUNCATION ERRORS

- Let's work with the known series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- Determine the EXACT value of this sum (use wolframalpha please!) →
- Then write out the value approximated the sum, correct to 9 decimal places
- **∘** →

- Let's work with the known series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- Determine the EXACT value of this sum $\frac{\pi^2}{12}$ (use wolframalpha please!) \Rightarrow
- Then write out the value approximated the sum, correct to 9 decimal places
- → 0.822467033......

EXPLORATION TRUNCATION ERRORS

- o Let's work with the known series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- Use wolframalpha to determine the following partial sums (round answers again to 9 decimal places – so we have estimated the sum of the series)

EXPLORATION TRUNCATION ERRORS

- Let's work with the know series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$
- Use wolframalpha to determine the following partial sums (round answers again to 9 decimal places so we have estimated the sum of the series)

$\sum_{n=1}^{5} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{10} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{15} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{20} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{25} \frac{(-1)^{n+1}}{n^2}$
.016144077	0.004504857	.002074723	0.001187655	.000768051

EXPLORATION TRUNCATION ERRORS

o Now let's find the <u>truncation errors</u>, $R_n = \left|S_\infty - S_n\right|$ when we do these approximations

$\sum_{n=1}^{5} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{10} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{15} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{20} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{25} \frac{(-1)^{n+1}}{n^2}$
.016144077	0.004504857	.002074723	0.001187655	.000768051

 \circ Now, let's find u_{n+1}

EXPLORATION TRUNCATION ERRORS

o Now let's find the <u>truncation errors</u>, $R_n = \left|S_\infty - S_n\right|$ when we do these approximations

$\sum_{n=1}^{5} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{10} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{15} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{20} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{25} \frac{(-1)^{n+1}}{n^2}$
.016144077	0.004504857	.002074723	0.001187655	.000768051

 \circ Now, let's find u_{n+1}

$u_{n+1} = \frac{1}{36}$	$u_{n+1} = \frac{1}{121}$	210	$u_{n+1} = \frac{1}{441}$	$u_{n+1} = \frac{1}{576}$
.027777777	.008264462	.00390625	.002267573	.001479289

EXPLORATION TRUNCATION ERRORS

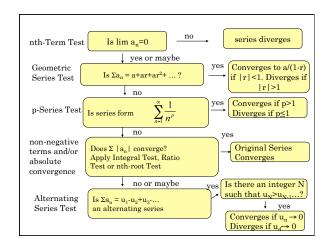
 ${\color{blue} \bullet}$ Now, what $\underline{\textit{general observation}}$ do we make about the truncation error and u_{n+1}

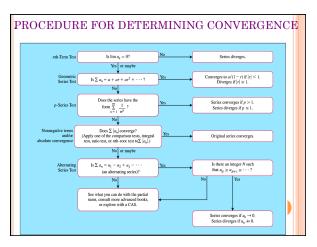
$\sum_{n=1}^{5} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{10} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{15} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{20} \frac{(-1)^{n+1}}{n^2}$	$\sum_{n=1}^{25} \frac{(-1)^{n+1}}{n^2}$
016144077	0.004504857	002074723	0.001187655	000768051

 ${\color{red} \circ}$ Now, let's find u_{n+1}

1	1	. 1	1	1
$u_{n+1} = \frac{1}{36}$	$u_{n+1} = \frac{1}{121}$	$u_{n+1} = \frac{1}{216}$	$u_{n+1} = \frac{1}{441}$	$u_{n+1} = \frac{1}{576}$
.027777777	.008264462	.00390625	.002267573	.001479289

EXPLORATION TRUNCATION ERRORS


- o Now, what general observation do we make about the truncation error and u_{n+1} ?
- $o \text{ In general, } |u_{n+1}| > |S_{\infty} S_n|$
- o WHY?
- & how do we make use of this "mathemagics"?


EXAMPLES

- o EX 1. What is the least number of terms in the series $\sum_{n=1}^{\infty}\frac{(-1)^{n+1}}{n^2} \ \text{such that the error in the estimate is}$ smaller than 10^{-6} ?
- ${
 m o}$ EX 2. How many terms of the series below must be taken in order for the error to be smaller than 10^{-8} ?

$$S_n = \frac{1}{2} - \frac{1}{2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} - \frac{1}{2 \cdot 3 \cdot 4 \cdot 5} + \dots$$

TESTS TO USE

EXAMPLES • See handout