

	Lesson Objectives		
	• Introduce the Integral Test for predicting convergences divergences of infinite series	and	
	• Practice using the Integral Test		
	• Introduce the idea of the <i>p</i> -series		
2	Calculus - Santowski	10/11/15	

COMPARISON THEOREM

- Suppose f and g are continuous functions with $f(x) \geq g(x) \geq 0$ for $x \geq a.$
 - If $\int_{a}^{\infty} f(x) dx$ is convergent, then $\int_{a}^{\infty} g(x) dx$ is convergent.
 - If $\int_{a}^{\infty} g(x) dx$ is divergent, then $\int_{a}^{\infty} f(x) dx$

COMPARISON THEOREM

- We omit the proof of the theorem.
- However, the figure makes it seem plausible.

