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Lesson Objectives

Lesson 68 - Infinite Series - Integral

® Introduce the Integral Test for predicting convergences and
TeSt divergences of infinite series

IBHL - Calculus - Santowski ® Practice using the Integral Test

® Introduce the idea of the p-series
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COMPARISON THEOREM COMPARISON THEOREM

® Suppose fand g are continuous functions with f(x) 2 g(x) 2 0 ® We omit the proof of the theorem.
for x = a.

® ® ® However, the figure makes it seem plausible.
o If j; f(x) dx is convergent, then j:l g(x) dx

is convergent.

o If fx g(X)dx is divergent, then fw f(x) dx

a
is divergent. f
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COMPARISON THEOREM COMPARISON THEOREM
® If the area under the top curve y = f(x) ® If the area under y = g(x) is infinite,
is finite, so is the area under the bottom curve y = g(x). 50 is the area under y = f(x).
y y
f f
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The Integral Test The Integral Test
' Suppose that we have a 15 Suppose that we have a

sequence {a,} and we

y =a(x) associate it with a continuous
function y = a(x), as we did a
few lessons ago. . .

Now we add some enlightening
pieces to our diagram....

sequence {a,} and we
associate it with a continuous
function y = a(x), as we did a
few lessons ago. . .

Look at the graph. . .
x What do you see?
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The Integral Test

. so fa(x)dx < Ea"
1 n=1
. y=alx)
converges
If the integral diverges

so does the series.

The Integral Test

Suppose that we have a
15 sequence {a,} and we
associate it with a continuous
y=alx) function y = a(x), as we did a
few lessons ago. . .

: Now look at this graph. . .
M What do you see?

The Integral Test

So a,s< f a(x)dx
15 1
T G
converges

‘ | .
08 — If the integral diverges
!!. so does the series.
0o

The Integral Test

The Integral Test:
Suppose for all x = 1, the function a(x) is continuous, positive, and
decreasing.

« ©
Consider the series Ean and the integral fa(x)dx
n=1 1

If the integral converges, then so does the series.
If the integral diverges, then so does the series.

REMARK:

Also, it is not necessary that f(x) be always
decreasing. What is important is that f(x) be
ultimately decreasing, that is, decreasing for
larger than some number N.
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Examples
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® Use the Integral Test to determine whether the series below

are convcrgcnt or divcrgcnt

(h)
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Exercises 10.3

Applying the Integral Test
Use the Integral Test to determine if the series in Exercises 1-10 con-
verge or diverge. Be sure to check that the conditions of the Integral
Test are satisfied.
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The p-series

series converge or divcrgc?

@3 =
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SUMMARY
o 1
(g)g -~
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® Use the Integral Test to determine whether the following
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