

Lesson Objectives

- (1) Review basic concepts dealing with sequences
- (2) Evaluate the limits of infinite sequences
- (3) Understand basic concepts associated with limits of sequences
- (4) Introduce limits of functions \& make the connection to infinite sequences

Setting the Stage

- Funtere $\int e^{-x^{2}} d x$
- Explain why we can't evaluate this integral with the techniques discussed so far in this course

(A) Review of Sequences
- List the first four terms of each of the following sequences:
(a) $\left\{\frac{2 n}{n+1}\right\}_{n=1}^{\infty}$
(b) $\{\sqrt{n+4}\}_{n=4}^{\infty}$
(c) $\left\{\sin \frac{n \pi}{6}\right\}_{n=1}^{\infty}$
(d) $\left\{\frac{(-1)^{n}(n+1)}{3^{n}}\right\}_{n=1}^{\infty}$

(A) Review of Sequences

- List the first four terms of each of the following sequences:
(a) $u_{n+1}=2\left(\sqrt{u_{n}}+1\right)$ where $u_{1}=9$
(b) $u_{n+1}=5-2 u_{n}$ where $u_{1}=-4$
- Write an explicit expression for the general term of:

$$
\left\{\frac{3}{5}, \frac{-4}{25}, \frac{5}{125}, \frac{-6}{625}, \frac{7}{3125}, \ldots \ldots . .\right\}
$$

(B) Limits of a Sequence

- Investigate the behaviour of these sequences:
(a) $u_{n}=\frac{4 n^{2}}{2 n^{2}+5}$
(b) $u_{n}=\frac{4 n^{2}}{2 n+5}$
(c) $u_{n}=\frac{(2 n-1)!}{(2 n+1)!}$
(d) $u_{n}=\frac{e^{n}+e^{-n}}{e^{2 n}-1}$
(B) Limit of a sequence
- Consider the sequence $\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$
- If we plot some values we get this graph

(B) Limit of a sequence
- Consider the sequence $\left\{\frac{n+1}{n^{2}}\right\}_{n=1}^{\infty}$

(B) Limits of a Sequence

- We say that $\lim _{n \rightarrow \infty} a_{n}=L$ if we can make a_{n} as close to L as we want for all sufficiently large n. In other words, the value of the a_{n} 's approach L as n approaches infinity.
- We say that $\lim _{n \rightarrow \infty} a_{n}=\infty$ if we can make a_{n} as large as we want for all sufficiently large n. Again, in other words, the value of the a_{n} 's get larger and larger without bound as n approaches infinity.
- We say that $\lim _{n \rightarrow \infty} a_{n}=-\infty$ if we can make a_{n} as large and negative as we want for all sufficiently large n. Again, in other words, the value of the a_{n} 's are negative and get larger and larger without bound as n approaches infinity.
(B) Limit of a sequence (Defn 1)
- A sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ has the limit L if we can make the terms of $\boldsymbol{a}_{\mathrm{n}}$ as close as we like by taking n sufficiently large.
- We write
$\lim _{n \rightarrow \infty} a_{n}=L \quad$ or $\quad a_{n} \rightarrow L$ as $n \rightarrow \infty$

(B) Limit of a sequence (Defn 2)
- A sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$ has the limit L if for every
$\varepsilon>0$ there is a corresponding integer N such that $\left|a_{n}-L\right|<\varepsilon, \quad$ whenever $n>N$
- We write
$\lim _{n \rightarrow \infty} a_{n}=L \quad$ or $\quad a_{n} \rightarrow L$ as $n \rightarrow \infty$

(B) Limits of a Sequence
- Example: Given the sequence $u_{n}=\frac{n+1}{2 n+1}$
- (a) Find the minimum value of m such that $n \geq m \Rightarrow\left|u_{n}-\frac{1}{2}\right|<0.1$
- (b) Consider the epsilon value of 0.001 and 0.00001 . In each case, find the minimum value of m such that

$$
n \geq m \Rightarrow\left|u_{n}-\frac{1}{2}\right|<\varepsilon
$$

Convergence/Divergence

- If $\lim _{n \rightarrow \infty} a_{n}$ exists we say that the sequence converges.
(B) Limits of a Sequence
- Which of the following sequences diverge or converge?
- Note that for the sequence to converge, the limit must be finite
- If the sequence does not converge we will say that it diverges
- Note that a sequence diverges if it approaches to infinity or if the sequence does not approach to anything
(a) $u_{n}=\frac{n^{3}+2 n}{n^{2}+4}$
(b) $u_{n}=\frac{3 n}{n+4}$
(c) $u_{n}=\frac{(-1)^{n}}{2^{n}}$
(d) $u_{n}=\sin (n)$

(C) More Limit Concepts
- If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant, then
$\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \pm \lim _{n \rightarrow \infty} b_{n}$
$\lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot \lim _{n \rightarrow \infty} a_{n}, \quad \lim _{n \rightarrow \infty} c=c$
(C) More Limit Concepts
$\lim _{n \rightarrow \infty}\left(a_{n} \cdot b_{n}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} b_{n}\right)$
$\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$, if $\lim _{n \rightarrow \infty} b_{n} \neq 0$
$\lim _{n \rightarrow \infty}\left(a_{n}^{p}\right)=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p}$, if $p>0$ and $a_{n}>0$

L'Hopital and sequences

- L'Hopital: Suppose that $f(x)$ and $g(x)$ are differentiable and that $g^{\prime}(x) \neq 0$ near a. Also suppose that we have an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$. Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Definition of a Monotonic
 Sequence

Definition of a Monotonic Sequence

A sequence $\left\{a_{n}\right\}$ is monotonic if its terms are nondecreasing

Definition of a Bounded Sequence

$$
a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n} \leq \cdots
$$

1. A sequence $\left\{a_{n}\right\}$ is bounded above if there is a real number M such that $a_{n} \leq M$ for all n. The number M is called an upper bound of the sequence.
or if its terms are nonincreasing

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots \geq a_{n} \geq \cdots
$$

