Lesson 65 – Infinite Sequences

HL Math - Santowski

Lesson Objectives

- (1) Review basic concepts dealing with sequences
- (2) Evaluate the limits of infinite sequences
- (3) Understand basic concepts associated with limits of sequences
- (4) Introduce limits of functions & make the connection to infinite sequences

Setting the Stage

• Evaluate
$$\int e^{-x^2} dx$$

Setting the Stage • Evaluate $\int e^{-x^2} dx$ • Explain why we can't evaluate this integral with the techniques discussed so far in this course

3

(B) Limits of a Sequence
• Investigate the behaviour of these sequences:
(a)
$$u_n = \frac{4n^2}{2n^2 + 5}$$

(b) $u_n = \frac{4n^2}{2n + 5}$
(c) $u_n = \frac{(2n - 1)!}{(2n + 1)!}$
(d) $u_n = \frac{e^n + e^{-n}}{e^{2n} - 1}$

- We say that $\lim_{n\to\infty} a_n = L$ if we can make a_n as close to L as we want for all sufficiently large n. In other words, the value of the a_n 's approach L as n approaches infinity.
- We say that $\lim_{n\to\infty} a_n = \infty$ if we can make a_n as large as we want for all sufficiently large *n*. Again, in other words, the value of the a_n 's get larger and larger without bound as *n* approaches infinity.
- We say that $\lim_{n\to\infty} a_n = -\infty$ if we can make a_n as large and negative as we want for all sufficiently large n. Again, in other words, the value of the a_n 's are negative and get larger and larger without bound as n approaches infinity.

Convergence/Divergence

- If $\lim_{n \to \infty} a_n$ exists we say that the sequence **converges**.
- Note that for the sequence to converge, the limit must be finite
- If the sequence does not converge we will say that it **diverges**
 - Note that a sequence diverges if it approaches to infinity or if the sequence does not approach to anything

(B) Limits of a Sequence

• Which of the following sequences diverge or converge?

(a)
$$u_n = \frac{n^3 + 2n}{n^2 + 4}$$

(b) $u_n = \frac{3n}{n + 4}$
(c) $u_n = \frac{(-1)^n}{2^n}$
(d) $u_n = \sin(n)$

(C) More Limit Concepts $\lim_{n \to \infty} (a_n \cdot b_n) = \left(\lim_{n \to \infty} a_n\right) \cdot \left(\lim_{n \to \infty} b_n\right)$ $\lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}, \text{ if } \lim_{n \to \infty} b_n \neq 0$ $\lim_{n \to \infty} \left(a_n^p\right) = \left(\lim_{n \to \infty} a_n\right)^p, \text{ if } p > 0 \text{ and } a_n > 0$

Definition of a Monotonic Sequence

Definition of a Monotonic Sequence

A sequence $\{a_n\}$ is **monotonic** if its terms are nondecreasing

 $a_1 \le a_2 \le a_3 \le \cdots \le a_n \le \cdots$ or if its terms are nonincreasing

in its terms are nonnereasing

 $a_1 \ge a_2 \ge a_3 \ge \cdots \ge a_n \ge \cdots$

Definition of a Bounded Sequence

Definition of a Bounded Sequence

- 1. A sequence $\{a_n\}$ is **bounded above** if there is a real number M such that $a_n \leq M$ for all n. The number M is called an **upper bound** of the sequence.
- 2. A sequence $\{a_n\}$ is **bounded below** if there is a real number N such that $N \le a_n$ for all n. The number N is called a **lower bound** of the sequence.
- **3.** A sequence $\{a_n\}$ is **bounded** if it is bounded above and bounded below.

Bounded Monotonic Sequences

THEOREM 9.5 Bounded Monotonic Sequences If a sequence $\{a_n\}$ is bounded and monotonic, then it converges.

Video links patrick jmt

- <u>https://www.youtube.com/watch?v=Kxh7yJC9Jr0</u>
- <u>https://www.youtube.com/watch?v=9K1xx6wfN-U</u>