

(A) Opening Problem

- A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given (in general) by
$\frac{d T}{d t}=A\left(T^{4}-B\right)$ where $T(0)=T_{0}($ inKelvin $)$
- But specifically now by:

$$
\frac{d T}{d t}=-2.2067 \times 10^{-12}\left(T^{4}-81 \times 10^{8}\right) \text { and } T(0)=1200 K
$$

- Estimate the temperature after 480 seconds

Lesson Objectives

- Review the previous types of First Order Diff Eqns that we already know how to solve
- Review solution strategies to solving Diff Eqns $\boldsymbol{\rightarrow}$ algebraic and graphic (slope fields)
- Find specific solutions to Diff Eqns through successive linear approximations (Euler's method)

(A) Overview

- This is where Euler's Method is used. Euler's Method provides us with an approximation for the solution of a differential equation. The idea behind Euler's Method is to use the concept of local linearity to join multiple small line segments so that they make up an approximation of the actual curve, as seen in the diagram.

Calculus - Santowski

(B) What is Euler's Method?

- METHOD: Essentially, you take an initial condition (a given data point), and use that condition as a starting point to take a small step h along the tangent line to get to a new point. Now repeat using the new point as a starting point.
- *Note:The smaller the steps used, the more accurate your graph will be.

(A) Overview

- Other times, we may not be interested in a visual solution (graph) \& we cannot algebraically develop the equation of the solution, but we may be interested in a SPECIFIC NUMERIC solution \rightarrow FOR EXAMPLE:
- A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by $\frac{d T}{d t}=-2.2067 \times 10^{-12}\left(T^{4}-81 \times 10^{8}\right), T(0)=1200 K$
- and we want an estimate the temperature after 480 seconds
(6)

Calculus- Santowski
8/31/15
(B) What is Euler's Method?

(B) Explain the next 4 slides

Calculus - Santowski
(B) Explain the next 3 slides

(B) Explain the next 2 slides

Calculus- Santowski
8/31/15
(C) Example

- Given the differential equation $\frac{d y}{d x}=x^{2} y$ and $y(0)=1$
find the value of $y(2)$ using Euler's method with 4 iterations.

\square
(C) Example

8/31/15

OVERVIEW: To Apply Euler's Method:

1. Divide the interval n equal subintervals. (In our example 4.)
2. Compute the width of each subinterval which is $\Delta x=h=\left(x_{n}-x_{0}\right) / n$.
3. Compute the sequence of points as follows:
$\left(x_{1}, y_{1}\right)=\left\{\begin{array}{l}x_{1}=x_{0}+\Delta x \\ y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) \Delta x\end{array}\right.$
$\left(x_{2}, y_{2}\right)=\left\{\begin{array}{l}x_{2}=x_{1}+\Delta x \\ y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) \Delta x\end{array}\right.$
$\left(x_{3}, y_{3}\right)=\left\{\begin{array}{l}x_{3}=x_{2}+\Delta x \\ y_{3}=y_{2}+f\left(x_{2}, y_{2}\right) \Delta x\end{array}\right.$
$\left(x_{4}, y_{4}\right)=\left\{\begin{array}{l}x_{4}=x_{3}+\Delta x \\ y_{4}=y_{3}+f\left(x_{3}, y_{3}\right) \Delta x\end{array}\right.$

In general the coordinates of the
point $\left(x_{n+1}, y_{n+1}\right)$ can be computed from the coordinates of the point $\left(x_{n}, y_{n}\right)$ as follows:
$\left(x_{n+1}, y_{n+1}\right)=\left\{\begin{array}{l}x_{n+1}=x_{n}+\Delta x \\ y_{n+1}=y_{n}+f\left(x_{n}, ~\right.\end{array}\right.$
$\left\{\left\{\begin{array}{l}x_{n+1}=x_{1}+\Delta x\left(x_{n}, y_{n}\right) \Delta x \\ y_{n+1}=y_{n}+f\end{array}\right.\right.$

Other examples ...

1. Answer the following questions
a) Given the differential equation $\frac{d y}{d x}=x+2$ and $y(0)=3$. Find an approximation for $y(1)$ by using Euler's method with two equal steps. Sketch you solution.
b) Solve the differential equation $\frac{d y}{d x}=x+2$ with the initial condition $y(0)=3$, and use your solution to find $y(1)$.
c) The error in using Euler's Method is the difference between the approximate value and the exact value. What was the error in your answer? How could you produce a smaller error using Euler's Method?

Calculus - Santowski

Other examples

2. Suppose a continuous function f and its derivative f^{\prime} have values that are given in the following table. Given that $f(2)=5$, use Euler's Method with two steps of size $\Delta x=0.5$ to approximate the value of $f(3)$.

Other examples
3. Given the differential equation $\frac{d y}{d x}=\frac{1}{x+2}$ and $y(0)=1$, find an approximation of $y(1)$ using Euler's Method with two steps and step size $\Delta x=0.5$
4. Given the differential equation $\frac{d y}{d x}=x+y$ and $y(1)=3$, find an approximation of $y(2)$ using Euler's Method with two equal steps.

Other examples

Assume that f and f^{\prime} have the values given in the table. Use Euler's Method with two equal steps to approximate the value of $f(4,4)$.

9. AP $2002-5$ (No Calculator)

Consider the differential equation: $\frac{d y}{d x}=2 y-4 x$
a) The slope field for the given differential equation is provided. Sketch the solution curve that passes through the point $(0,-1)$ and sketch the
solution curve that passes through the point
$(0,-1)$.
($0,-1$).
b) Let fbe the function that satisfies the given and condition $f(0)=1$. Use Euler's method, starting at $x=0$ with a step size of 0.1, to
approximate $f(0.2)$. Show the work that leads to your answer.
c) Find the value of b for which $y=2 x+b$ is a solution to the given differenti
d) Let g be the function that satisfics the given differential equation with the initial condition $g(0)=0$. Does the graph of g have a local extremum at the point $(0,0)$? If so, is the point a local maximum or a
local minimum? Justify your answer.

Other worked examples

- http://iss.schoolwires.com/cms/lib4/NC01000579/Centricity/Domain/ 2872/eulers\%20method\%20practice2.pdf
- https://mrswood17. wikispaces.com/file/view/6.6+Euler's+worksheet + answers.pdf
- http:/ /liberty.kernhigh.org/wp-content/uploads/2013/09/Eulers-method-2013.pdf
- http://apcentral.collegeboard.com/apc/public/repository/ ap09_calculus_bc_q4.pdf

(A) Back to Opening Problem

- A ball at 1200 K is allowed to cool down in air at an ambient temperature of 300 K . Assuming heat is lost only due to radiation, the differential equation for the temperature of the ball is given by

$$
\frac{d T}{d t}=-2.2067 \times 10^{-12}\left(T^{4}-81 \times 10^{8}\right), T(0)=1200 K
$$

- Estimate the temperature after 480 seconds, using h to be 240 .

Solution Cont

Step 2: For $i=1, t_{1}=240, \theta_{1}=106.09$
$\theta_{2}=\theta_{1}+f\left(t_{1}, \theta_{1}\right) h$
$=106.09+f(240,106.09) 240$
$=106.09+\left(-2.2067 \times 10^{-12}\left(106.09^{4}-81 \times 10^{8}\right)\right) 240$
$=106.09+(0.017595) 240$
$=110.32 \mathrm{~K}$
θ_{2} is the approximate temperature at $t=t_{2}=t_{1}+h=240+240=480$
$\theta(480) \approx \theta_{2}=110.32 \mathrm{~K}$

Solution Cont

The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as
$0.92593 \ln \frac{\theta-300}{\theta+300}-1.8519 \tan ^{-1}(0.00333 \theta)=-0.22067 \times 10^{-3} t-2.9282$
The solution to this nonlinear equation at $\mathrm{t}=480$ seconds is
$\theta(480)=647.57 \mathrm{~K}$

Solution

Step 1:
$\frac{d \theta}{d t}=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right)$
$f(t, \theta)=-2.2067 \times 10^{-12}\left(\theta^{4}-81 \times 10^{8}\right)$
$\theta_{i+1}=\theta_{i}+f\left(t_{i}, \theta_{i}\right)_{h}$
$\theta_{1}=\theta_{0}+f\left(t_{0}, \theta_{0}\right) h$
$=1200+f(0,1200) 240$
$=1200+\left(-2.2067 \times 10^{-12}\left(1200^{4}-81 \times 10^{8}\right)\right) 240$
$=1200+(-4.5579) 240$
$=106.09 \mathrm{~K}$
θ_{1} is the approximate temperature at $t=t_{1}=t_{0}+h=0+240=240$
$\theta(240) \approx \theta_{1}=106.09 \mathrm{~K}$
26

Comparison of Exact and
Numerical Solutions

Figure 3. Comparing exact and Euler's method
29
Effect of step size
Table 1. Temperature at $\mathbf{4 8 0}$ seconds as a function of step size, \mathbf{h}

Step, h	$\theta(480)$	E_{t}	$\left\|\epsilon_{\mathrm{t}}\right\| \%$
480	-987.81	1635.4	252.54
240	110.32	537.26	82.964
120	546.77	100.80	15.566
60	614.97	32.607	5.0352
30	632.77	14.806	2.2864

$\theta(480)=647.57 K \quad($ exact $)$

Video Resources

- https://www. youtube.com/watch?
$\mathrm{v}=4 \mathrm{WGYb} 87 \mathrm{MjCM}$ \&index=3\&list=PLE11A4E20EA273630
- https://www.youtube.com/watch?v=ty_tLCj3WEk

Figure 4. Comparison of Euler's method with exact solution for different step sizes 31

