

Lesson Objectives

- Review the previous types of First Order Diff Eqns that we already know how to solve
- Review solution strategies to solving Diff Eqns → algebraic and graphic (slope fields)
- Find specific solutions to Diff Eqns through successive linear approximations (Euler's method)

Calculus - Santowski

8/31/15

(A) Overview

- If we were given a separable differential equation and an initial condition, we could find the solution.
- However, there are some differential equations where this simple technique (separable) will not work → so there are other techniques for solving differential equations, but again they too sometimes fail.

Calculus - Santowsk

8/31/15

(B) What is Euler's Method?

- METHOD: Essentially, you take an initial condition (a given data point), and use that condition as a starting point to take a small step *h* along the tangent line to get to a new point. Now repeat using the new point as a starting point.
- *Note: The smaller the steps used, the more accurate your graph will be.

Others						
Other e	examp	les				
2. Suppose a continuous t	unction f and i	its deriva	tive f' hav	e values that	are given in the following	table.
Given that $f(2) = 5$, u f(3).	se Euler's Met	hod with	two steps o	of size $\Delta x = 0$	0.5 to approximate the value	of
	$\frac{x}{f'(r)}$	0.4	2.5	0.8		
	f(x)	5		_		
19 Calculus - Santowski					8/31/1	5

Other examples
 Given the differential equation dy/dx = 1/(x+2) and y(0) = 1, find an approximation of y(1) using Euler's Method with two steps and step size Δx = 0.5. Given the differential equation dy/dx = x + y and y(1) = 3, find an approximation of y(2) using Euler's Method with two equal steps.
20 Calculus - Santowski 8/31/15

Solution Cont

Step 2: For i = 1, $t_1 = 240$, $\theta_1 = 106.09$

```
\begin{aligned} \theta_2 &= \theta_1 + f(t_1, \theta_1) t_1 \\ &= 106.09 + f(240, 106.09) 240 \\ &= 106.09 + (-2.2067 \times 10^{-12} (106.09^4 - 81 \times 10^8)) 240 \\ &= 106.09 + (0.017595) 240 \\ &= 110.32 K \end{aligned}
```

 θ_2 is the approximate temperature at $t = t_2 = t_1 + h = 240 + 240 = 480$

 $\theta\bigl(480\bigr) {\approx}\, \theta_2 = 110.32 K$

27

Solution Cont The exact solution of the ordinary differential equation is given by the solution of a non-linear equation as $0.92593 \ln \frac{\theta - 300}{\theta + 300} - 1.8519 \tan^{-1}(0.00333\theta) = -0.22067 \times 10^{-3}t - 2.9282$ The solution to this nonlinear equation at t=480 seconds is $\theta(480) = 647.57K$

Effect of step size										
Table 1. Temperature at 480 seconds as a function of step size, h										
	Step, h	θ(480)	E_t	¢ _t %						
	480	-987.81	1635.4	252.54						
	240	110.32	537.26	82.964						
	120	546.77	100.80	15.566						
	60	614.97	32.607	5.0352						
	30	632.77	14.806	2.2864						
$\theta(480) = 647.57K$ (exact)										

