
Lesson Objectives
I. Sketch a slope field for a given differential equation and
use the given boundary conditions to identify a specific
solution curve on their slope field.
2. Provide a geometric interpretation of differential
equations using slope fields.
3. Explain the relationship between slope fields and
solution curves for differential equations.
3 Calculus - Santowski $8 / 24 / 15$

Fast Five

- I. Solve the DE $y^{\prime}=2 x-5$
- 2. Determine the tangent slopes of $y(x)$ from QI for the points on the table below:
-3. Solve the DE $y^{\prime}=x+y$
- 4. Determine the tangent slopes of $y(x)$ from Q 3 for the points on the table below:

$(-2,2)$	$(-1,2)$	$(0,2)$	$(1,2)$	$(2,2)$
$(-2,1)$	$(-1,1)$	$(0,1)$	$(1,1)$	$(2,1)$
$(-2,0)$	$(-1,0)$	$(0,0)$	$(1,0)$	$(2,0)$
$(-2,-1)$	$(-1,-1)$	$(0,-1)$	$(1,-1)$	$(2,-1)$
$(-2,-2)$	$(-1,-2)$	$(0,-2)$	$(1,-2)$	$(2,-2)$

- 2

Calculus - Santowski 8/24/I5
(A) Intro to Slope Fields

- There is a geometric/graphical representation of the solutions to a differential equation that can assist us with understanding the solution even if we do not know the algebraic expression of the solution.
- This representation is called a slope field.

[^0]
(A) Intro to Slope Fields

- Consider the following example: $\mathrm{dy} / \mathrm{dx}=-2 \mathrm{xy}$

Key point: we can get information about slope, of the solution curve, at any point directly from the DE \{without solving it\}.

- The slope, $y^{\prime}(x)$, of the solutions $y(x)$, is determined once we know the values for x and y
e.g., if $x=1$ and $y=-I$, then the slope of the solution $y(x)$ passing through the point $(1,-1)$ will be $(-2)(1)(-1)=2$
- If we graph $y(x)$ in the $x-y$ plane, it will have slope 2 , given $x=I$ and $y=-1$.
- We indicate this graphically by inserting a small line segment at the point $(I,-I)$ of slope 2.
- See next slide for a graphic representation of this slope segment
> 5
Calculus - Santowski 8/24/15

(A) Intro to Slope Fields

- Thus, the solution of the DE $d y / d x=-2 x y$ with the initial condition $y(1)=-I$ will look similar to this line segment as long as we stay close to $x=-I$.
- Hence, we can draw small line segments with slope $\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$ at any desired point ($\mathrm{x}_{\mathbf{i}} \mathrm{y}_{\mathrm{i}}$)

(A) Intro to Slope Fields

- We can get an idea as to the form of the differential equation's solutions by " connecting the dots." So far, we have graphed little pieces of the tangent lines of our solutions. The " true" solutions should not differ very much from those tangent line pieces!

| 8
Calculus - Santowski 8/24/15

(B) Slope Fields: Drawing Specific Solutions to

DE

- We can get an idea as to the visual form of the differential equation's solutions by connecting the dots." \rightarrow So let's practice:

(B) Slope Fields: Drawing Specific Solutions to DE
- We can get an idea as to the visual form of the differential equation's solutions by connecting the dots." \rightarrow So let's practice:

(B) Slope Fields: Drawing Specific Solutions to DE
- We can get an idea as to the visual form of the differential equation's solutions by connecting the dots." \rightarrow So let's practice:

(C) Drawing Slope Fields w/o Technology
- It is great to use a computer, but sometimes one is required to sketch a slope field by hand.
- To do this we use a version of a T-table and then use small line segments to make the sketch.
- Example: Sketch a few representative slopes of the slope field $\quad y^{\prime}=x-y / 2$
- 15

Calculus - Santowski 8/24/I
(C) Drawing Slope Fields w/o Technology

- We will sketch the integer points for $-2 \leq x \leq 2$ and $-2 \leq$ $\mathrm{y} \leq 2$.

| Point | $(-2,-2)$ | $(-2,-1)$ | $(-2,0)$ | $(-2,1)$ | $(-2,2)$ |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Slope | -1 | -1.5 | -2 | -2.5 | -3 |
| Point | $(-1,-2)$ | $(-1,-1)$ | $(-1,0)$ | $(-1,1)$ | $(-1,2)$ |
| Slope | 0 | -0.5 | -1 | -1.5 | -2 |
| Point | $(0,-2)$ | $(0,-1)$ | $(0,0)$ | $(0,1)$ | $(0,2)$ |
| Slope | 1 | 0.5 | 0 | -0.5 | -1 |
| Point | $(1,-2)$ | $(1,-1)$ | $(1,0)$ | $(1,1)$ | $(1,2)$ |
| Slope | 2 | 1.5 | 1 | 0.5 | 0 |
| Point | $(2,-2)$ | $(2,-1)$ | $(2,0)$ | $(2,1)$ | $(2,2)$ |
| Slope | 3 | 2.5 | 2 | 1.5 | 1 |

> 16
Calculus - Santowski 8/24/I5

(D) Drawing Slope Fields - Examples Draw the slope field for $\frac{d y}{d x}=y-1$

(E) Matching Slope Fields to DE

- Finally, we should * be able to match DE with slope field diagrams:
$y^{\prime}=2 x-y$
$y^{\prime}=2 x+y$
$y^{\prime}=x-2 y$
$y^{\prime}=x+2 y$

(F) Internet Links
(3) http://tutorial.math.lamar.edu/Classes/DE/DirectionFields.aspx
http://apcentral.collegeboard.com/apc/public/repository/
ap08 calculus slopefields worksheet.pdf
\rightarrow http://www.mrsk.ca/AP/Korpis7.IslopeFields.pdf
http://www.sandi.net/cms/lib/CA01001235/Centricity/Domain/8052/61\ -\ Slope \%20Fields\%20Worksheet.pdf
http://designatedderiver.wikispaces.com/file/view/slope+fields+\%231.pdf

[^0]: - 4

 Calculus-Santowski 8/24/15

