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Lesson 57 - Applications 
of  DE 

Calculus - Santowski 
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Lesson Objectives 

•  1. Apply differential equations to applications 
involving exponential growth & decay, Newton’s 
Law of  Cooling, and introduce the Logistic 
Equation for population modeling 
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Fast Five 

•  Solve the following DE: 
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(A) Exponential Growth 

•  Write a DE for the 
statement: the rate of  
growth of  a population 
is directly proportional 
to the population  

•  Solve this DE: 
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(A) Exponential Growth 

•  The population of  bacteria grown in a culture 
follows the Law of  Natural Growth with a 
growth rate of  15% per hour. There are 10,000 
bacteria after the first hour. 

•  (a) Write an equation for P(t) 

•  (b) How many bacteria will there be in 4 hours? 

•  (c) when will the number of  bacteria be 250,000? 
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(B) Law of  Natural Growth 

•  Solve the following problem using DE: 

•  A disease spreads through Doha at a rate 
proportional to the number of  people in Doha. If  50 
people are infected on the third day and 146 people 
are infected on the 6th day, determine  

•  (i) how many people will be infected on day 12? 

•  (ii) Relief  from the UN will come only when at least 
7.5% of  Doha’s population (currently say 850,000) is 
infected. When will relief  come? 
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Example from IB 

The population of  mosquitoes in a specific area around a 
lake is controlled by pesticide. 

The rate of  decrease of  the number of  mosquitoes is 
proportional to the number of  mosquitoes at any time t. 
Given that the population decreases from 500 000 to 400 
000 in a five year period, find the time it takes in years for 
the population of  mosquitoes to decrease by half. 
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Example from IB 

•   A certain population can be modelled by the 
differential equation dy/dt = kycoskt, where y is the 
population at time t hours and k is a positive 
constant. 

•  (a)  Given that y = y0 when t = 0, express y in terms 
of  k, t and y0. 

•  (b)  Find the ratio of  the minimum size of  the 
population to the maximum size of  the population. 
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(B) Law of  Natural Growth 

•  Our previous question makes one KEY assumption 
about spread of  disease (and population growth in 
general)  

•  Which is ….. ????? 

•  So now we need to adjust for more realistic 
population growth assumptions   
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(C) Newton’s Law of  Cooling 

•  Write a DE for the following scenario: 

•  The rate at which a hot object cools to the ambient 
temperature of  its surroundings is proportional to 
the temperature difference between the body and its 
surroundings, given that T(0) = To 

•  Now solve this DE 
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(C) Newton’s Law of  Cooling 

•  The DE can be written as 

•  Where T(t) is the temperature at any given time and 
A is the ambient (room) temperature 

•  And the solution turns out to be    
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(C) Newton’s Law of  Cooling 

•  In a steel mill, rod steel at 900ºC is cooled by forced 
air at a temperature of  20ºC. The temperature of  the 
steel after one second is 400ºC. When will the steel 
reach a temperature of  40ºC?  
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(C) Newton’s Law of  Cooling 

•  A pie is removed from a 175ºC oven. The room 
temperature is 24ºC. How long will it take the pie to 
cool to 37ºC if  it cooled 60º in the first minute?  
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(C) Newton’s Law of  Cooling 

•  A thermometer reading -7ºC is brought into a room 
kept at 23ºC. Half  a minute later, the thermometer 
reads 8ºC. What is the temperature reading after 
three minutes? 
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(D) Logistic Equation 

•  A more realistic model for population growth in 
most circumstances, than the exponential model, 
is provided by the Logistic Differential 
Equation.  

•  In this case one’s assumptions about the growth 
of  the population include a maximum size 
beyond which  the population cannot expand.  

•  This may be due to a space limitation, a ceiling 
on the  food supply or the number of  people 
concerned in the case of  the spread of  a rumor.  
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(D) Logistic Equation 

•  One then assumes that the growth rate of  the 
population is proportional to number of  individuals 
present, P(t), but that this rate is now constrained by 
how close the number P(t) is to the maximum size 
possible for the population, M.  

•  A natural way to include this assumption in your 
mathematical model is  

•  P’ (t) = k⋅P(t)⋅ (M - P(t)).  

6/1/15 Calculus - Santowski 16 

(D) Logistic Equation 
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(D) Logistic Equation 

•  So to solve this equation, we separate our variables 
and try to integrate …..  
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(D) Logistic Equation 

•  Now we notice something new in our separable DE 
 the denominator of  the fraction is a product!! 

•  This gets into a technique called partial fractions 
(AARRGGHHH), so we will avoid it and simply use 
some tricks on the TI-89 
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(D) Logistic Equation 

•  Consider the product 

•  So what two fractions where added together to form 
this product fraction ==> i.e.  
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(D) Logistic Equation 

•  Consider the product 

•  So what two fractions where added together to form 
this product fraction ==> i.e.  

•  You are welcome to run through the algebra 
yourself, but why not simply expand  
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(D) Logistic Equation 

•  So back to our DE 

•  We get 

•  So this will simplify our integration because the integral 
of  a sum/difference is simply the sum/difference of  
integrals …..  
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(D) Logistic Equation 

•  So then integrating gives us 
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(D) Logistic Equation 

•  And upon simplification, we 
get 

•  Which we call a logistic 
function  

•  And upon graphing: 
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(E) Examples 

•  Fish biologists put 200 fish into a lake whose carrying 
capacity is estimated to be 10,000. The number of  fish 
quadruples in the first year 

(a) Determine the logistic equation 
(b) How many years will it take to reach 5000 fish? 
(c) When there are 5000 fish, fisherman are allowed to catch 

20% of  the fish. How long will it take to reach a 
population of  5000 fish again? 

(d) When there are 7000 fish, another 20% catch is allowed. 
How long will it take for the population to return to 7000? 
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 Mixing Problems 
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•  Ex 1 

•  Ex 2 

•  Ex 3 

Mixing Problems – Worked Example 

•  A tank contains 20 kg of  salt dissolved  
in 5000 L of  water. 

•  Brine that contains 0.03 kg of  salt per liter of  water 
enters the tank at a rate of  25 L/min. 

•  The solution is kept thoroughly mixed and drains  
from the tank at the same rate. 

•  How much salt remains in the tank after half  an hour? 

MIXING PROBLEMS 

•  Let y(t) be the amount of  salt (in kilograms) after t 
minutes.  

•  We are given that y(0) = 20 and we want to find 
y(30). 

• We do this by finding a differential equation  
satisfied by y(t). 

MIXING PROBLEMS 

•  Note that dy/dt  is the rate of  change of   
the amount of  salt. 

•  Thus,  

where: 

•  ‘Rate in’ is the rate at which salt enters the tank. 

•  ‘Rate out’ is the rate at which it leaves the tank. 

( ) ( )rate in rate outdy
dt

= −

RATE IN 

•  We have: 
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MIXING PROBLEMS 

•  The tank always contains 5000 L of  
liquid. 

•  So, the concentration at time t is y(t)/5000 
(measured in kg/L). 

RATE OUT 

•  As the brine flows out at a rate of  25 
L/min, we have: 

MIXING PROBLEMS 

•  Thus, from Equation 5, we get: 

•  Solving this separable differential equation,  
we obtain: 

MIXING PROBLEMS 

•  Since y(0) = 20, we have:  
   –ln 130 = C  

So, 

MIXING PROBLEMS 

•  Therefore, 

• y(t) is continuous and y(0) = 20, and the right side  
is never 0. 

• We deduce that 150 – y(t) is always positive. 

MIXING PROBLEMS 

•  Thus, |150 – y| = 150 – y. 

•  So,  

•  The amount of  salt after 30 min is: 
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MIXING PROBLEMS 

•  Here’s the graph of  the function y(t)  
of  Example 6. 

•  Notice that, as time  
goes by, the amount  
of  salt approaches  
150 kg. 

Further Mixing Problems 
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Further Mixing Problems 
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Further Mixing Problems 
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Further Mixing Problems 
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