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Lesson 56 – Separable 
Differential Equations 

Calculus - Santowski 
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Lesson Objectives 
  1. Solve separable differential equations 

with and without initial conditions  
  2. Solve problems involving exponential 

decay in a variety of application 
(Radioactivity, Air resistance is 
proportional to velocity, Continuously 
compounding interest, Population growth)  
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(A) Separable Equations 
  So far, we have seen differential 

equations that can be solved by 
integration since our functions were 
relatively easy functions in one variable 

  Ex. dy/dx = sinx - 1/x 
  Ex. dv/dt = -9.8  
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(A) Separable Equations 
  In Ex 1, we simply 

evaluated the indefinite 
integral of both sides 

€ 

dy
dx

= sin x − 1
x

dy
dx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dx∫ = sin x − 1

x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫ dx

y = −cos x − ln x + C

  But what about the 
equation dy/dx = -x/y? 

  If we tried finding 
antiderivatives or 
indefinite integrals …. 

€ 

dy
dx

= −
x
y

dy
dx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ dx∫ = −

x
y

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ∫ dx

y = ???

SEPARABLE EQUATION 
  A separable equation is a first-order 

differential equation in which the 
expression for dy/dx can be factored as 
a function of x times a function of y. 

  In other words, it can be written in the form 

( ) ( )dy g x f y
dx

=

SEPARABLE EQUATIONS 
  The name separable comes from  

the fact that the expression on the 
right side can be “separated” into a 
function of x and a function of y. 
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SEPARABLE EQUATIONS 
  Equivalently, if f(y) ≠ 0, we could write  

where 

( )
( )

dy g x
dx h y

=

( ) 1/ ( )h y f y=

SEPARABLE EQUATIONS 
  To solve this equation, we rewrite it in  

the differential form h(y) dy = g(x) dx 
so that: 

  All y’s are on one side of the equation. 
  All x’s are on the other side. 

SEPARABLE EQUATIONS 
  Then, we integrate both sides  

of the equation: 

( ) ( )h y dy g x dx=∫ ∫

SEPARABLE EQUATIONS – 
Example #1 
a.  Solve the differential equation 

b.  Find the solution of this equation that 
satisfies the initial condition y(0) = 2. 

2

2

dy x
dx y

=

SEPARABLE EQUATIONS – 
Example #1 - SOLN 
  We write the equation in terms of 

differentials and integrate both sides: 

   y2 dy = x2 dx 

  ∫ y2 dy = ∫ x2 dx 

  ⅓y3 = ⅓x3 + C  
  where C is an arbitrary constant. 

SEPARABLE EQUATIONS – 
Example #1 - SOLN 
  We could have used a constant C1 on  

the left side and another constant C2 
on  
the right side.  

  However, then, we could combine  
these constants by writing C = C2 – C1. 



5/30/15 

3 

SEPARABLE EQUATIONS – 
Example #1 - SOLN 
  Solving for y, we get: 

  We could leave the solution like this or we could  
write it in the form  

where K = 3C. 
  Since C is an arbitrary constant, so is K. 

3 3 3y x C= +

3 3y x K= +

SEPARABLE EQUATIONS – 
Example #1 - SOLN 
  If we put x = 0 in the general solution 

in (a), we get: 

  To satisfy the initial condition y(0) = 2,  
we must have              , and so K = 8. 

  So, the solution of the initial-value problem is: 

3(0)y K=

3 2K =

3 3 8y x= +

SEPARABLE EQUATIONS – 
Example #1 - SOLN 
  The figure shows 

graphs of several 
members of the 
family of solutions of 
the differential 
equation in Ex 1. 
  The solution of  

the initial-value 
problem in (b) is 
shown in red. 

(B) Example #2 
  Given the DE 

  (a) Solve 
  (b) Graph  
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€ 

dy
dx

= −
x
y

  and  y(2) = 5

Family of solutions (general solution) 
of a differential equation 

Example  

The picture on the right shows some 
solutions to the above differential 
equation.  The straight lines   
                y = x  and  y = -x  
are special solutions.  A unique 
solution curve goes through any 
point of the plane different from the 
origin.  The special solutions y = x  
and  y = -x  go both through the 
origin.  

SEPARABLE EQUATIONS – 
Example #3 

 Solve the equation 
 y’ = x2y 

  First, we rewrite the equation  
using Leibniz notation: 

2dy x y
dx

=



5/30/15 

4 

SEPARABLE EQUATIONS – 
Example #3 - SOLN 
  If y ≠ 0, we can rewrite it in differential  

notation and integrate: 
2

2

3

0

ln
3

dy x dx y
y
dy x dx
y

xy C

= ≠

=

= +

∫ ∫

SEPARABLE EQUATIONS – 
Example #3 - SOLN 
  The equation defines y implicitly as a 

function of x. 
  However, in this case, we can solve 

explicitly for y. 

  Hence, 

( )3 3/3ln /3x Cy C xy e e e e+
= = =

3 /3C xy e e= ±

SEPARABLE EQUATIONS – 
Example #3 - SOLN 

  We can easily verify that the function y = 0 
is also a solution of the given differential 
equation.  

  So, we can write the general solution in the form  

where A is an arbitrary constant (A = eC,  
or A = –eC, or A = 0). 

3 /3xy Ae=

SEPARABLE EQUATIONS – 
Example #3 - SOLN 
  The figure shows a direction field for  

the differential equation in Example 3. 

  Compare it with the next  
figure, in which we use  
the equation  
to graph solutions for  
several values of A. 

3 /3xy Ae=

SEPARABLE EQUATIONS – 
Example #3 - SOLN 
  If you use the 

direction field to 
sketch solution 
curves with y-
intercepts 5, 2, 1, 
–1, and –2, they 
will resemble the 
curves in the 
figure. 

(B) Example #4 
  Given the DE 

  (a) Solve 
  (b) Graph  
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€ 

ʹ′ y = x 2y  and  y 33( ) = 4e
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(B) Example #5 
  Given the DE 

  (a) Solve 
  (b) Graph  
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€ 

y + y dy
dx

= xy − dy
dx

  and  y(2) =1

(B) Example #6 
  Given the DE 

  (a) Solve 
  (b) Graph  

5/30/15 Calculus - Santowski 26 

€ 

dy
dx

= xey−x  and  y(0) = 2
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(B) Example #7 
  Given the DE 

  (a) Solve given 
  (b) Graph the solutions on a slope field 

diagram 
€ 

dy
dx

=
6x 2

2y + cos y

€ 

y 1( ) = π
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(B) Example #7 – Graphic SOLN 
  Here is the graphic 

solution for  

€ 

dy
dx

=
6x 2

2y + cos y

Example #8 

  Solve  
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SOLN to Example #8 
A separable differential equation can be expressed as the 
product of a function of x and a function of y. 

Example: 

Multiply both sides by  dx  and divide 
both sides by  y2  to separate the 
variables.   (Assume y2 is never zero.) 
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A separable differential equation can be expressed as the 
product of a function of x and a function of y. 

Example: 

Combined 
constants of 
integration 

SOLN to Example #8 

Example #9 

   Solve  

SOLN to Example #9 

Separable differential equation 

Combined constants of integration 

SOLN to Example #9: 

We now have y as an implicit 
function of x. 

We can find y as an explicit function 
of x by taking the tangent of both 
sides. 
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(C) - Application - Exponential 
Growth 

  Write a DE for the statement: the rate of 
growth of a population is directly 
proportional to the population 

  Solve this DE 
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(C) - Application - Exponential 
Growth 
  Write a DE for the 

statement: the rate of 
growth of a population 
is directly proportional 
to the population  

€ 

dP
dt

∝P   or    dP
dt

= kP

€ 

dP
dt

= kP

dP
P∫ = kdt∫

lnP = kt + C

P(t) = ekt+C = eCekt

P(t) = Cekt

  Solve this DE: 
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(D) Examples 
  The population of bacteria grown in a culture 

follows the Law of Natural Growth with a 
growth rate of 15% per hour. There are 
10,000 bacteria after the first hour. 

  (a) Write an equation for P(t) 
  (b) How many bacteria will there be in 4 

hours? 
  (c) when will the number of bacteria be 

250,000? 
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(D) Examples 
  The concentration of phosphate pollutants in a lake 

follows the Law of Natural Growth with a decay rate 
of 5.75% per year. The phosphate pollutant 
concentrations  are 125 ppm in the second year. 

  (a) Write an equation for P(t) 
  (b) What will there be phosphate pollutant 

concentration in 10 years? 
  (c) A given species of fish can be re-introduced into 

the lake when the phosphate concentration falls 
below 35 ppm. When can the fish be re-introduced? 

Challenge Problems 
  Solve these DEs: 

	
  	
  	
  	
  

€ 

(i)	
  	
  
dy

dx
=
xy +3y +2x +6

xy −2y − x +2

(ii)	
  	
  ey sin2xdx +cos e2 y − y( )dy = 0

(iii)	
  	
  x sinxdx + 1+ 4y3( )dy = 0
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MIXING PROBLEMS 
  A tank contains 20 kg of salt dissolved  

in 5000 L of water. 

  Brine that contains 0.03 kg of salt per liter of water 
enters the tank at a rate of 25 L/min. 

  The solution is kept thoroughly mixed and drains  
from the tank at the same rate. 

  How much salt remains in the tank after half an 
hour? 

MIXING PROBLEMS 
  Let y(t) be the amount of salt (in 

kilograms) after t minutes.  
  We are given that y(0) = 20 and we 

want to find y(30). 

  We do this by finding a differential equation  
satisfied by y(t). 

MIXING PROBLEMS 
  Note that dy/dt  is the rate of change of  

the amount of salt. 
  Thus,  

where: 

  ‘Rate in’ is the rate at which salt enters the tank. 
  ‘Rate out’ is the rate at which it leaves the tank. 

( ) ( )rate in rate outdy
dt

= −

RATE IN 
  We have: 

kg Lrate in 0.03 25
L min

kg0.75
min

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

MIXING PROBLEMS 

  The tank always contains 5000 L  
of liquid. 

  So, the concentration at time t is y(t)/5000 
(measured in kg/L). 

RATE OUT 
  As the brine flows out at a rate of 25 

L/min, we have: 
( ) kg Lrate out 25

5000 L min
( ) kg

200 min

y t

y t

⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=
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MIXING PROBLEMS 
  Thus, from Equation 5, we get: 

  Solving this separable differential equation,  
we obtain: 

( ) 150 ( )0.75
200 200

dy y t y t
dt

−
= − =

   
150 200

ln 150
200

dy dt
y

ty C

=
−

− − = +

∫ ∫

MIXING PROBLEMS 
  Since y(0) = 20, we have:  

   –ln 130 = C  

So, ln 150 ln130
200
ty− − = −

MIXING PROBLEMS 
  Therefore, 

  y(t) is continuous and y(0) = 20, and the right side  
is never 0. 

  We deduce that 150 – y(t) is always positive. 

/ 200150 130 ty e−− =

MIXING PROBLEMS 
  Thus, |150 – y| = 150 – y. 
  So,  

  The amount of salt after 30 min is: 
30 200(30) 150 130 38.1 kgy e−= − ≈

/ 200( ) 150 130 ty t e−= −

MIXING PROBLEMS 
  Here’s the graph of the function y(t)  

of Example 6. 

  Notice that, as time  
goes by, the amount  
of salt approaches  
150 kg. 

Real-life populations do not increase forever.   There is 
some limiting factor such as food or living space. 

There is a maximum population, or carrying capacity, M. 

A more realistic model is the logistic growth model where 

growth rate is proportional to both the size of the 

population (y) and the amount by which y falls short of the 

maximal size (M-y). Then we have the equation: 

Logistic Growth Model 

The solution to this differential equation: 


