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Lesson 54 - FTC PART 2 

Calculus - Santowski 
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Review 
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 We have seen a definition/formula for a 
definite integral as  

 where F’(x) = f(x) (or the antiderivative 
of f(x) 

 And have seen an interpretation of the 
definite integral as a “net/total change”  

€ 

A(x) = lim
n→∞

f xi( )Δx
i=1

n

∑ = f (x)dx = F(x) a
b

= F(b) − F(a)
a

b

∫

FTC, PART 1 
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  Some textbooks/resources refer to this 
statement as the Integral Evaluation Theorem 
⇒ as it tells us HOW to evaluate the definite 
integral                                            

     by finding antiderivatives 

€ 

f (x)dx = F(x) a
b

= F(b) − F(a)
a

b

∫

A Graphic Representation 
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  We need to visualize our 
equations & terms to keep 
our ideas clear in our 
minds 

  Our function in question 
will be y = f(t) 

  The area under the curve 
of y = f(t) we have called 
A(x), but it will now be 
called  g(x) 

  So here is the graph: 

A Graphic Representation 
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  So, as we have done in past 
exercises, the value of the 
upper limit (b) is being 
varied – its value is changing 
from anywhere between a 
and b (i.e. a < x < b) 

  Therefore, the area is 
constantly changing as a 
result of the value of x  in 
other terms, the area is a 
function of the value of x  
hence A(x) or rather now 
g(x) 

  So here is the graph: 

A Graphic Representation of the Area 
Function 

   Let’s work with the area under the curve f(t) = t2,  

 starting from x = 0 so our integral will be 

   Now, let’s set the upper limit to x = 1 and we get 
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€ 

A(x) = t2dt
0

??

∫

	  	  	  	  

€ 

A(x) = t2dt
0

1

∫ = 1
3
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A Graphic Representation of the Area 
Function 

   Now, let’s set the upper limit to x = 2 and we get 

  Now, let’s set the upper limit to x = 3 and we get 
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€ 

A(x) = t2dt
0

2

∫ = 8
3

	  	  	  	  

€ 

A(x) = t2dt
0

3

∫ = 27
3

A Graphic Representation of the Area 
Function 

   Now, let’s set the upper limit to x = 4 and we get 

  Now, let’s set the upper limit to x = 5 and we get 
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€ 

A(x) = t2dt
0

4

∫ = 64
3

	  	  	  	  

€ 

A(x) = t2dt
0

5

∫ =125
3
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A Graphic Representation from Before 

   Now that we have seen a 
few calculations and some 
“data points”, let’s see 
what we really have ??? 

   We have the function  

x	
 0	
 1	
 2	
 3	
 4	
 5	


Area	
 0	
 1/3	
 8/3	
 27/3	
 64/3	
 125/3	


	  	  	  	  

€ 

A(x) =
1

3
x3

FTC, Part 2 
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  So what does            REALLY mean?? 

  Try this as a simple contrast  we have looked as 
integration as a process that generates fixed numbers 
(that correspond to net areas under curves) 

  Now, with a different notion  the value of the upper 
limit is variable, we are now considering         
as a FUNCTION, not a single number 

  What does the function represent  the antiderivative of 
y = f(t)  

€ 

g(x) = f (t)dt
a

x

∫

€ 

g(x) = f (t)dt
a

x

∫

FTC, Part 2 
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  So here’s the shift in our understanding  the expression  

  IS AN EXPRESSION for the antiderivative of y = f(t) 
which graphically could be understood as a cumulative 
AREA function 

€ 

g(x) = f (t)dt
a

x

∫

A Clarifying Example (I Hope) 
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  Let’s go back to y = f(t) = t2 between a = 0 and b = 5 

  So we have worked out the integral 

  So now as the value of b changes, we get  

  Where the antiderivative (1/3x3) can be used to evaluate 
for the area under the curve 

€ 

t 2dt =
1
3
t 3

0

5

=
125
30

5

∫

€ 

t 2dt =
1
3
t 3

0

x

=
1
3
x 3 + 0 =

1
3
x 3

0

x

∫
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A Clarifying Example (I Hope) 
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  So we need to recognize the equivalence of the following 
2 statements: 

  In one statement, the antiderivative is given as a simple, 
explicit function, in the other, the antiderivative 
function is defined as an integral of f(t) 

  To become consistent in our notations, I will switch the 
statements to  

€ 

A(x) =
1
3
x 3  and   A(x) = t 2dt

0

x

∫

€ 

g(x) =
1
3
x 3  and   g(x) = t 2dt

0

x

∫

FTC, Part 2 
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  If f is continuous on [a,b] then the fcn  

   has  a derivative at every point in [a,b] and 

  So what does this really mean ⇒ Every continuous 

function f(x) HAS an antiderivative (which simply happens 

to be expressed as an integral as:                  )  rather 

than explicitly in terms of elementary functions! 

€ 

F(x) = f (t)dt
a

x

∫

€ 

d
dx
F(x) =

d
dx

f (t)dt
a

x

∫ = f (x)

€ 

f (t)dt
a

x

∫

Using the FTC, Part 2 
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  Find the derivative of the following functions 

  For all real numbers of x, define 

     Evaluate                               and interpret € 

g(x) = sin t dt
0

x

∫

g(x) = sin t dt
2

x

∫

g(x) = sin t dt
x

π

∫

€ 

F(x) = sin πt( )dt
0

x

∫

€ 

ʹ′ F 3
4
⎛ 

⎝ 
⎜ 
⎞ 

⎠ 
⎟  and ʹ′ F − 1

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Using the FTC, Part 2 
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  Find the derivative of the following functions 

€ 

g(x) = t 3 +1( )dt
1

x

∫

g(x) = sin t dt
0

3x 2

∫

g(x) = t 3 +1( )dt
1

sin x

∫

Using the FTC, Part 2 
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  Find dy/dx if:   Find a function, y = f(x) 
with a derivative of  

   that satisfies the condition 
f(3) = 5 

€ 

y = cos t dt
1

x 2

∫

y = 3t sin t dt
x

5

∫

y =
1

2 + et2x

x 2

∫  dt
€ 

dy
dx

= tan x

Using the FTC 

  Given the function f be as 

shown and let 

  (a) Evaluate g(0), g(2), g(4), g(7) 
and g(9) and g(11) 

  (b) On what intervals is g 
increasing? 

  (c) Where does g have a 
maximum value? 

  (d) Sketch a rough graph of g(x) 
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€ 

g(x) = f (t)dt
0

x

∫
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Using the FTC, Part 2 
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  Graph the function defined by 

  Address the following in your solution: 
  (i) determine and discuss F’(x) 
  (ii) determine and discuss F’’(x) 
  (iii) find symmetry of F(x) 
  (iv) estimate some points using trapezoid sums 

€ 

F(x) = e− t
2

dt
0

x

∫

Using the FTC, Part 2 
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  We can use the methods of differential calculus to analyze 
these functions!!  

  Find the interval on which the curve 
       is concave up  

  Find the interval on which the curve 
     is increasing 

€ 

y x( ) =
1

1+ t + t 2
dt

0

x

∫

€ 

y x( ) =
1

1+ t + t 2
dt

0

x

∫

Using the FTC, Part 2 
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  Given that 

  (a) Find all critical points of F 
  (b) Determine the interval on which F increase and F 

decreases 
  (c) Determine the intervals of concavity and inflection 

points of F 
  (d) Sketch a graph of F  

€ 

F(x) =
1

1+ t 2
dt

0

x

∫

FTC, Part 2 
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  What is the advantage of defining an antiderivative as an 
integral? => we can then simply use our numerical 
integration methods (RRAM, LRAM etc) to estimate 
values 


