

Lesson Objectives Use the method of integration by parts to integrate simple power, exponential, and trigonometric functions both in a mathematical context and in a real world problem context Catollus - Sartowell

(A) Product Rule

 Recall that we can take the derivative of a product of functions using the product rule:

$$\frac{d}{dx} [f(x) \cdot g(x)] = f(x) \cdot g'(x) + g(x) \cdot f'(x)$$

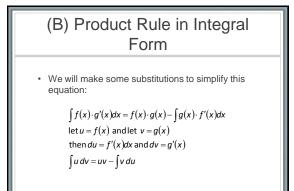
• So we are now going to integrate this equation and see what emerges

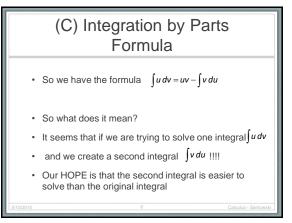
5/10/2015 3 Calculus - S

(B) Product Rule in Integral Form • We have the product rule as $\frac{d}{dx}[f(x)\cdot g(x)] = f(x)\cdot g'(x) + g(x)\cdot f'(x)$ • And now we will integrate both sides: $\int \frac{d}{dx}[f(x)\cdot g(x)]dx = \int f(x)\cdot g'(x)dx + \int g(x)\cdot f'(x)dx$ $f(x)\cdot g(x) = \int f(x)\cdot g'(x)dx + \int g(x)\cdot f'(x)dx$

 $\int f(x) \cdot g'(x) dx = f(x) \cdot g(x) - \int g(x) \cdot f'(x) dx$

rearranging





(D) Examples

• Integrate the following functions:

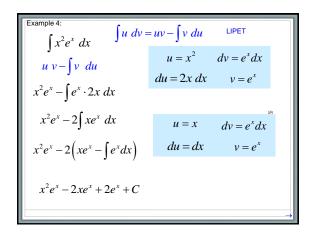
(a) $\int xe^x dx$ (b) $\int x^2 e^x dx$ (c) $\int \ln(x) dx$ (d) $\int x \ln(x) dx$

(D) Examples

• The easiest way to master the method is by practicing, so determine $\int xe^x dx$ • So we have a choice
Let $u=e^x$ and then dv=xdxSo $du=e^x dx$ and $v=\frac{1}{2}x^2$ So we get: $\int xe^x dx = e^x \cdot \frac{1}{2}x^2 - \int \frac{1}{2}x^2 e^x dx$ • Comment: Is the second integral any easier than the original???

(D) Examples

• So let's make the other choice as we determine $\int xe^x dx$ Let u = x and then $dv = e^x dx$ So du = dx and $v = e^x$ So we get: $\int xe^x dx = xe^x - \int e^x dx$ • Checkpoint: Is our second integral any "easier" than our first one??? $\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C$ • Now verify by differentiating the answer

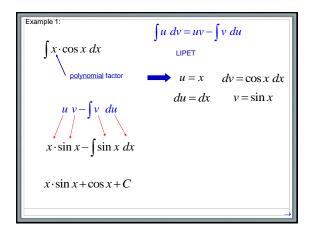


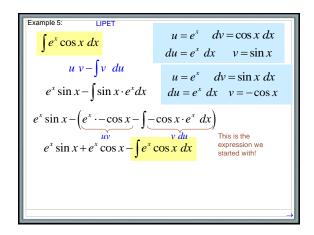
Example: $\int u \ dv = uv - \int v \ du$ $\int \ln x \ dx$ $\log \text{arithmic factor}$ $u = \ln x \qquad dv = dx$ $du = \frac{1}{x} dx \qquad v = x$ $\ln x \cdot x - \int x \cdot \frac{1}{x} \ dx$ $x \ln x - x + C$

(D) More Examples

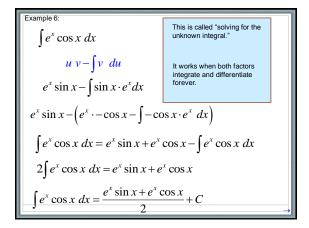
• Integrate the following functions:

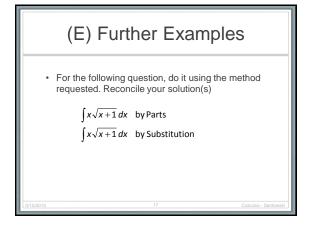
(a) $\int x \cos(x) dx$ (b) $\int e^x \cos(x) dx$ (c) $\int x^2 \cos(x) dx$ (d) $\int \operatorname{arcsin}(x) dx$

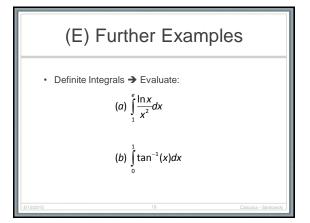




```
Example 6: \int e^x \cos x \, dx
u = e^x \quad dv = \cos x \, dx
du = e^x \quad dx \quad v = \sin x
u = e^x \quad dx \quad v = \sin x
u = e^x \quad dx \quad v = \sin x
u = e^x \quad dx \quad v = \sin x
u = e^x \quad dx \quad v = \sin x \, dx
du = e^x \quad dx \quad v = -\cos x
e^x \sin x - \left(e^x \cdot -\cos x - \int -\cos x \cdot e^x \, dx\right)
\int e^x \cos x \, dx = e^x \sin x + e^x \cos x - \int e^x \cos x \, dx
2 \int e^x \cos x \, dx = e^x \sin x + e^x \cos x
\int e^x \cos x \, dx = \frac{e^x \sin x + e^x \cos x}{2} + C
```







• Calculate
$$\int_0^1 \tan^{-1} x \, dx$$

• Let
$$u = \tan^{-1} x$$
 $dv = dx$

• Then,
$$du = \frac{dx}{1+x^2} \qquad v = x$$

$$\int_0^1 \tan^{-1} x \, dx = x \tan^{-1} x \Big]_0^1 - \int_0^1 \frac{x}{1+x^2} \, dx$$

$$= 1 \cdot \tan^{-1} 1 - 0 \cdot \tan^{-1} 0 - \int_0^1 \frac{x}{1+x^2} \, dx$$

$$= \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} \, dx$$

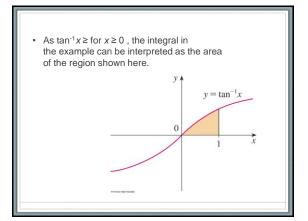
- To evaluate this integral, we use the substitution $t = 1 + x^2$ (since u has another meaning in this example).
 - Then, dt = 2x dx.
 - So, $x dx = \frac{1}{2} dt$.

• When
$$x = 0$$
, $t = 1$, and when $x = 1$, $t = 2$.

• Hence,
$$\int_0^1 \frac{x}{1+x^2} dx = \frac{1}{2} \int_1^2 \frac{dt}{t}$$
$$= \frac{1}{2} \ln|t| \Big]_1^2$$
$$= \frac{1}{2} (\ln 2 - \ln 1)$$
$$= \frac{1}{2} \ln 2$$

• Therefore,

$$\int_0^1 \tan^{-1} x \, dx = \frac{\pi}{4} - \int_0^1 \frac{x}{1+x^2} \, dx$$
$$= \frac{\pi}{4} - \frac{\ln 2}{2}$$



Further Examples

```
The continuous management of parts. The continuous management of parts t = \int \theta \cos \theta d\theta and t = \int (e^2 - 5c)e^2 ds

4. \int s^2 \sin s ds 10. \int s^2 e^s ds

6. \int_0^s s^3 \ln s ds 21. \int_0^s e^{2s} \cos \theta d\theta

8. \int se^{2s} ds 22. \int_0^s e^{2s} \cos 3s ds
                                                                                                                                                                                               18. \int (r^2 + r + 1)e^r dr
1. \int x \sin \frac{x}{2} dx
                                                                                                                                                                                               20. \int t^2 e^{4t} dt
3. \int t^2 \cos t dt
5. \int_{1}^{2} x \ln x \, dx
                                                                                                                                                                                            22. \int e^{-y} \cos y \, dy
7. \int xe^x dx
9. \int x^2 e^{-x} dx
                                                          10. \int (x^2 - 2x + 1) e^{2x} dx
                                                          12. \int \sin^{-1} y \, dy
                                                                                                                                                                                                26. \int_{0}^{1} x \sqrt{1-x} dx
```

Further Examples

Using Substitution

Evaluate the integrals in Exercises 25-30 by using a substitution prior to integration by parts.

$$25. \int e^{\sqrt{3s+9}} ds$$

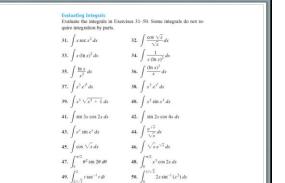
26.
$$\int_{0}^{1} x \sqrt{1-x} \, dx$$

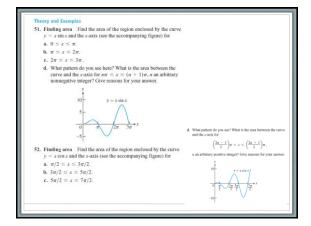
27.
$$\int_0^{\pi/3} x \tan^2 x \, dx$$
 28. $\int \ln(x + x^2) \, dx$

28.
$$\int \ln(x + x^2) dx$$

29.
$$\int \sin(\ln x) dx$$

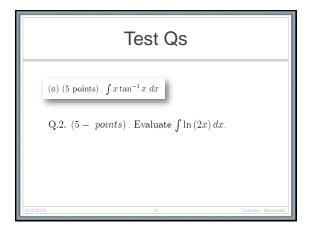
29.
$$\int \sin(\ln x) dx$$
 30.
$$\int z(\ln z)^2 dz$$

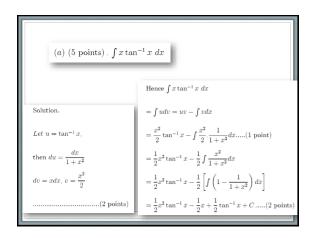




53. Finding volume Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve $y=e^x$, and the line $x=\ln 2$ about the line $x = \ln 2$. 54. Finding volume Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve $y = e^{-x}$, and the line x = 1a. about the y-axis. **b.** about the line x = 1. 55. Finding volume Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes and the curve $y = \cos x$, $0 \le x \le \pi/2$, about a. the y-axis. **b.** the line $x = \pi/2$. 56. Finding volume Find the volume of the solid generated by revolving the region bounded by the x-axis and the curve $y = x \sin x$, $0 \le x \le \pi$, about (See Exercise 51 for a graph.)

57. Consider the region bounded by the graphs of $y = \ln x$, y = 0, a. Find the area of the region. b. Find the volume of the solid formed by revolving this region about the x-axis. c. Find the volume of the solid formed by revolving this region about the line x = -2. d. Find the centroid of the region. 58. Consider the region bounded by the graphs of $y=\tan^{-1}x$, y=0, a. Find the area of the region. b. Find the volume of the solid formed by revolving this region about the y-axis. 59. Average value A retarding force, symbolized by the dashpot in the accompanying figure, slows the motion of the weighted spring so that the mass's position at time t is $y = 2e^{-t}\cos t, \quad t \ge 0.$ Find the average value of v over the interval $0 \le t \le 2\pi$.





Q.2. (5-points). Evaluate $\int \ln{(2x)} dx$. $u = \ln{(2x)} \qquad dv = dx$ SOLUTION. $du = \frac{2dx}{2x} = \frac{dx}{x} \qquad v = x$ $\int \ln{(2x)} dx = x \ln{(2x)} - \int dx \dots \longrightarrow (2-points)$ $= x \ln{(2x)} - x + C \dots \longrightarrow (1-point)$

INTEGRATION BY PARTS
 Evaluate ∫ e^x sin x dx
 e^x does not become simpler when differentiated.
 Neither does sin x become simpler.

Nevertheless, we try choosing $u = e^x$ and $dv = \sin x$ Then, $du = e^x dx$ and $v = -\cos x$.

INTEGRATION BY PARTS

So, integration by parts gives: $\int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx$ The integral we have obtained, $\int e^x \cos x \, dx$, is no simpler than the original one.

At least, it's no more difficult.

Having had success in the preceding example integrating by parts twice, we do it again.

INTEGRATION BY PARTS

This time, we use

$$u = e^x$$
 and $dv = \cos x dx$

Then, $du = e^x dx$, $v = \sin x$, and

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx$$

INTEGRATION BY PARTS

At first glance, it appears as if we have accomplished nothing.

• We have arrived at $\int e^x \sin x \, dx$, which is where we started.

INTEGRATION BY PARTS

However, if we put the expression for $\int e^x \cos x \, dx$ from Equation 5 into Equation 4, we get:

 $\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x$

 $-\int e^x \sin x \, dx$

This can be regarded as an equation to be solved for the unknown integral.

INTEGRATION BY PARTS

Adding to both sides $\int e^x \sin x \, dx$, we obtain:

 $2\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x$

INTEGRATION BY PARTS

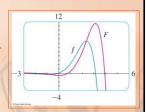
Dividing by 2 and adding the constant of integration, we get:

$$\int e^x \sin x \, dx = \frac{1}{2} e^x (\sin x - \cos x) + C$$

INTEGRATION BY PARTS

The figure illustrates the example by showing the graphs of $f(x) = e^x \sin x$ and $F(x) = \frac{1}{2} e^x (\sin x - \cos x)$.

 As a visual check on our work, notice that f(x) = 0 when F has a maximum or minimum.



(F) Internet Links

- Integration by Parts from Paul Dawkins, Lamar University
- Integration by Parts from Visual Calculus

5/10/2015 43 Calculus - Santou