Lesson 52 - Integration by Substitution

IBHL - Calculus - Santowski

Calculus - Santowski
5/13/15
Calculus - Santowski
5/13/15

Fast Five

- Differentiate the following functions:
$\frac{d}{d x}\left(x^{2}+5\right)^{3}$
$\frac{d}{d x} e^{x^{2}}$
$\frac{d}{d x} \sin (\ln (\sqrt{x+3}))$
$\frac{d}{d x} \sin \left(\frac{4}{x^{3}}\right)$
$\frac{d}{d x} \frac{1}{\left(x^{2}+6 x\right)^{2}}$
$\frac{d}{d x} \ln \left(x^{3}+1\right)$
(B) "Simple" Examples ????

- Find the following:	- Now, try these:
$\int \sqrt[4]{x} d x$	
$\int \frac{1}{t^{3}} d t$	$\int e^{x^{2}} d x$
$\int \cos w d w$	$\int \sin \left(\frac{4}{x^{3}}\right) d x$
$\int e^{y} d y$	

$\int e^{y} d y$

Calculus - Santowsk
Calculus - Santowsk

- Alright, let's use wolframalpha to help us with some of the following integrals:
- Now, look at our fast 5
- Now, let's look for patterns???
- Examples
$\int 2 x e^{x^{2}} d x$
$\int-\frac{12}{x^{4}} \sin \left(\frac{4}{x^{3}}\right) d x$
$\int \frac{3 x^{2}}{x^{3}+1} d x$
$\int \frac{\cos (\ln (x))}{x} d x$

5/13/15

(C) Looking for Patterns

- So, in all the integrals presented here, we see that some part of the function to be integrated is a
COMPOSED function and
then the second pattern we observe is that we also see some of the derivative of the "inner" function appearing in the integral

(D) Generalization from our Pattern

- So we can make the following generalization from our observation of patterns:
$\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u$
where $u=g(x)$ and then $d u=g^{\prime}(x) d x$
- But the question becomes: how do we know what substitution to make???
- Generalization: ask yourself what portion of the integrand has an inside function and can you do the integral with that inside function present. If you can't then there is a pretty good chance that the inside function will be the substitution.
(E) Working out Some Examples In these problems, a substitution is given.

1. $\int(3 x-5)^{17} d x, u=3 x-5$
2. $\int_{0}^{4} x \sqrt{x^{2}+9} d x, u=x^{2}+9$
3. $\int \frac{e^{\sqrt{x}}}{\sqrt{x}} d x, u=\sqrt{x}$.
4. $\int \frac{\cos 3 x d x}{5+2 \sin 3 x}, u=5+2 \sin 3 x$
(E) Working out Some Examples

- Integrate $\int x^{2}\left(3-10 x^{3}\right)^{4} d x$
- Integrate $\int 9 x^{2} \sqrt[4]{6 x^{3}+5} d x$
(E) Working out Some Examples
- Integrate $\int x^{2}\left(3-10 x^{3}\right)^{4} d x$

$$
\begin{aligned}
& \text { Let } u=3-10 x^{3} \text { then } d u=-30 x^{2} d x \\
& \text { so } x^{2} d x=-\frac{1}{30} d u \text { and we get : } \\
& =\int u^{4} \cdot-\frac{1}{30} d u=-\frac{1}{30} \int u^{4} d u \\
& =-\frac{1}{30} \cdot \frac{u^{4+1}}{4+1}+C \\
& =-\frac{1}{150}\left(3-10 x^{3}\right)^{5}+C
\end{aligned}
$$

(E) Working out Some Examples

- Integrate
$\int 9 x^{2} \sqrt[4]{6 x^{3}+5} d x$

Let $u=6 x^{3}+5$ then $d u=18 x^{2} d x$
so $9 x^{2} d x=\frac{1}{2} d u$ and we get :
$=\int \sqrt[4]{u} \cdot \frac{1}{2} d u=\frac{1}{2} \int u^{1 / 4} d u$
$=\frac{1}{2} \cdot \frac{u^{1 / 4+1}}{1 / 4+1}+C$
$=\frac{2}{5}\left(6 x^{3}+5\right)^{\frac{5}{4}}+C$
(E) Working out Some Examples

In these problems, you need to determine the substitution yourself.
5. $\int(4-3 x)^{7} d x$.
6. $\int_{\pi / 4}^{\pi / 3} \csc ^{2}(5 x) d x$
7. $\int x^{2} e^{3 x^{3}-1} d x$

13 Calculus-Santowski
(F) Further Examples

- Integrate the following:
$\int x^{2} e^{e^{3}} d x \quad \int \frac{x^{2}}{\sqrt{1-x^{3}}} d x$
$\int \frac{\ln x}{x} d x \quad \int \sin ^{4}(x) \cos (x) d x$
$\int \sin x \cos x d x \quad \int \tan x d x$
$\int \cos (3 x) \sin ^{10}(3 x) d x \quad \int x^{2} \sin \left(x^{3}\right) d x$

Calculus. Smowe
13/15
(F) Further Examples

- Integrate the following:
$\int_{0}^{\pi / 4} \tan x \sec ^{2} x d x$
$\iint^{9} \frac{\sqrt{\sqrt{x}}}{\sqrt{x}} d x$
$\int_{-1}^{1} x^{2} \sqrt{x^{3}+1} d x$
(F) Challenge Examples
- Integrate the following:
(a) $\int \frac{x}{x+1} d x$
(b) $\int \sin ^{2}(x) d x$
(c) $\int \cos ^{2}(x) d x$
(d) $\int \sec (x) d x$
(F) Challenge Examples

Sometimes there is more than one way to skin a cat:
8. Find $\int \frac{x}{1+x} d x$, both by long division and by substituting $u=1+x$.
9. Find $\int \frac{2 x d z}{\sqrt[3]{z^{2}+1}}$, both by substituting $u=z^{2}+1$ and $u=\sqrt[3]{z^{2}+1}$. 5/13/15
(F) Challenge Examples

- Integrate the following:
(a) $\int \frac{x^{2}}{x+1} d x$
$\begin{array}{ll}\text { (b) } \int \frac{x^{4}+x-4}{x^{2}-2} d x & \text { (c) } \int \frac{x^{5}-35 x}{x^{2}+6} d x\end{array}$
(d) $\int \frac{d x}{x^{2}-4 x+4}$
(e) $\int \frac{d x}{\sqrt{-x^{2}+4 x-3}}$
(f) $\int \frac{d x}{2+9 x^{2}}$
(g) $\int \frac{d x}{\sqrt{4-25 x^{2}}}$

```
An Application to Business
```

In 1990 the head of the research and development department of the Soloron Corp. claimed that the cost of producing solar cell panels would drop at the rate of

$$
\frac{58}{(3 t+2)^{2}}, 0 \leq t \leq 10
$$

dollars per peak watt for the next t years, with $t=0$ corresponding to the beginning of the year 1990. (A peak watt is the power produced at noon on a sunny day.) In 1990 the panels, which are used for photovoltaic power systems, cost $\$ 10$ per peak watt. Find an expression giving the cost per peak watt of producing solar cell panels at the beginning of year t. What was the cost at the beginning of 2000?

An Application to Business
This tells you the expression is a
derivative.
In 1990 the head of the research apd development department of the Soloron Corp. claimed that the cost of pryducing solar cell panels would drop at the rate of

$$
\frac{58}{(3 t+2)^{2}}, 0 \leq t \leq 10
$$

dollars per peak watt for the next t years, with $t=0$ corresponding to the beginning of the year 1990. (A peak watt is the power produced at noon on a sunny day.) In 1990 the panels, which are used for photovoltaic power systems, cost $\$ 10$ per peak watt. Find an expression giving the cost per peak watt of producing solar cell panels at the beginning of year t. What was the cost at the beginning of 2000?
Since the expression is a dropping rate in cost, the expression is $\mathrm{C}^{\prime}(\mathrm{x})$
or the derivative of the cost $\mathrm{C}(\mathrm{x})$ and it should be negative since it is
dropping. Thus:
$C^{\prime}(t)=\frac{-58}{(3 t+2)^{2}}, 0 \leq t \leq 10$
$\int \frac{-58}{(3 t+2)^{2}} d t=\int \frac{-58}{u^{2}} \frac{d u}{3}=\frac{-58}{3} \int u^{-2} d u=\frac{-58}{3} \frac{u^{-1}}{-1}=\frac{58}{3 u}=\frac{58}{3(3 t+2)}+C$

$d u=3 d t+2$
$\frac{d u}{3}=d t$

The Cost Function $\mathrm{C}(\mathrm{t})$ is
$C(t)=\frac{58}{3(3 t+2)}+C$

The Cost Function $\mathrm{C}(\mathrm{t})$ is $\quad C(t)=\frac{58}{3(3 t+2)}+C$

Use the initial condition that the cost in 1990 was $\$ 10$,
or when $t=0, C(0)=\$ 10$, thus

$$
\begin{aligned}
& 10=\frac{58}{3(3 \cdot 0+2)}+C \\
& 10=\frac{58}{6}+C \\
& 60=58+6 C \\
& 2=6 C \\
& \frac{2}{6}=\frac{1}{3}=C
\end{aligned}
$$

$$
\text { Hence, } \quad C(t)=\frac{58}{3(3 t+2)}+\frac{1}{3}
$$

$C(t)=\frac{58}{3(3 t+2)}+\frac{1}{3}$

Now to find the cost per peak watt at the beginning of the year 2000 which is
10 years from 1990 and would correspond to
$\mathrm{t}=10$.

$$
\begin{aligned}
& C(10)=\frac{58}{3(3(10)+2)}+\frac{1}{3}=\frac{58}{3(32)}+\frac{1}{3} \\
& \frac{58}{96}+\frac{1}{3} \approx .9375 \approx .94
\end{aligned}
$$

Thus the cost per peak watt of producing solar cell panels at the beginning of 2000 is approximately $\$.94$ per peak watt.

Applications

The marginal price of a supply level of x bottles of baby shampoo per week is given by

$$
\mathrm{p}^{\prime}(\mathrm{x})=\frac{300}{(3 \mathrm{x}+25)^{2}}
$$

Find the price-supply equation if the distributor of the shampoo is willing to supply 75 bottles a week at a price of $\$ 1.60$ per bottle.
To find $p(x)$ we need the $\int p^{\prime}(x) d x$

| Applications - continued |
| :--- | :--- |
| The marginal price of a supply level of x bottles of baby
 shampoo per week is given by $\quad \mathbf{p}^{\prime}(\mathbf{x})=\frac{\mathbf{3 0 0}}{(\mathbf{3 x}+\mathbf{2 5})^{2}}$
 Find the price-supply equation if the distributo of the
 shampoo is willing to supply 75 bottles a week at a price of
 $\$ 1.60$ per bottle.
 With $\mathrm{u}=3 \mathrm{x}+25,-\mathbf{1 0 0} \boldsymbol{u}^{-1}+\boldsymbol{c}=-100(3 \mathrm{x}+25)^{-1}+\mathrm{c}$
 so $\mathrm{p}(\mathrm{x})=-100(3 \mathrm{x}+25)^{-1}+\mathrm{c}=\frac{-100}{3 \mathrm{x}+25}+\mathrm{c}$
 Remember you may differentiate to |

Further Substitutions

Further Substitutions

- Given the ellipse $4 x^{2}+y^{2}=4$, determine:
- Integrate the following indefinite integrals:
(a) $\int \sqrt{16-x^{2}} d x$
(b) $\int \sqrt{x^{2}-16} d x$
(c) $\int \frac{\sqrt{9-x^{2}}}{x^{2}} d x$
(d) $\int \frac{d x}{x^{2} \sqrt{x^{2}+4}}$
(e) $\int \frac{x}{\sqrt{x^{2}+4}} d x$
- (a) the x -intercepts
- (b) the area between the ellipse, the \mathbf{x}-axis and the zeroes

CHALLENGE

- Evaluate:

$$
\int_{0}^{\frac{3 \sqrt{3}}{2}} \frac{x^{3}}{\left(4 x^{2}+9\right)^{3 / 2}} d x
$$

- ANS $=3 / 32$
(31) Culculuse. Smomombi

5/13/15

