

Fast Five - Investigation

- I. Determine the area of a circle if the radius is 6 cm .

2. Determine the area of a circle if its radius is defined by y $=2 x$ at the point where $x=3$.
3. Draw the function $f(x)=2 x$ on the interval $[0,3]$. Estimate the area under $f(x)$ on $[0,3]$ using RRAM and 3 rectangles. Draw a diagram
4. Explain what happens when each of the 3 rectangles is completely rotated around the x-axis. Draw a diagram.
5. Explain what the idea of "volume of revolution" means

Lesson Ojectives

- I. Determine the volume of revolution of an object rotated about the x-axis
- 2. Determine by slicing (disk and washer method) or cylindrical shells to calculate volumes of solids
- 3.Apply volumes and average values to a real world problems
- 2

Calculus - Santowski 5/1/15

(A) Volumes of Revolution

- Go to the following link and watch the animation showing the rotation of a graph about the x-axis and explaining how to determine the volume of the solid obtained in the animation above.
- http://archives.math.utk.edu/visual.calculus/5/volumes.5/ index.html and go to the fifth link
- Explain the following formula to me:

$V_{x}=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi \times(f(x))^{2} d x=\pi \int_{a}^{b}(f(x))^{2} d x$
$V_{y}=\int_{a}^{b} A(y) d y=\int_{a}^{b} \pi \times(f(y))^{2} d y=\pi \int_{a_{a}}^{b}(f(y))^{2} d y$

(C) Example 1
- Example I: Determine the volume of the solid obtained by rotating the region bounded by $f(x)=x^{2}-4 x+5$, $x=1, x=4$, and the x-axis about the x-axis.
-

ANS: 78л/5
http://tutorial.math.lamar.edu/Classes/Calcl/
VolumeWithRings.aspx

- 5

Calculus - Santowski $5 / 1 / 15$
(D) Example 2
(b) Example 2:Area bounded by the graphs of $f(x)=x^{3}-x+I, x=-I, x=I$ and the x-axis.

- ANS: $226 \pi / 105$
- http://archives.math.utk.edu/visual.calculus/5/volumes.5/ index.html
-

| 6 Calculus - Santowski $5 / 1 / 15$
(E) Example 3

Determine the volume of the solid formed when $y=x^{2}$ is rotated around the y-axis between $y=0$ and $y=9$
(F) Volumes of Revolution - Rings \& 2 Curves

- AREA of a RING $\boldsymbol{\rightarrow}$ a region bounded by 2 curves

Area $=\pi \times(\text { outer })^{2}-\pi(\text { inner })^{2}=\pi\left((\text { outer })^{2}-(\text { inner })^{2}\right)$

- Formula to use: \rightarrow see animation on
http://archives.math.utk.edu/visual.calculus/5/volumes.5/ index.html (ring)
- $\quad V_{x}=\int_{a}^{b} A(x) d x=\int_{a}^{b} \pi \times\left[(f(x))^{2}-(g(x))^{2}\right] d x=\pi \int_{a}^{b}\left[(f(x))^{2}-(g(x))^{2}\right] d x$
$V_{y}=\int_{a}^{b} A(y) d y=\int_{a}^{b} \pi \times\left[(f(y))^{2}-(g(y))^{2}\right] d y=\pi \int_{a}^{b}\left[(f(y))^{2}-(g(y))^{2}\right] d y$
| 8 Calculus - Santowski $5 / 1 / 15$

(G) Example 1

- (c) Example I: Determine the volume of the solid obtained by rotating the portion of the region bounded by the following 2 curves that lies in the first quadrant about the x-axis.

$$
y=\sqrt[3]{x} \text { and } y=\frac{x}{4}
$$

-

ANS: $128 \pi / 15$

- http://tutorial.math.lamar.edu/Classes/Calcl/ VolumeWithRings.aspx
- 9 Calculus - Santowski $5 / 1 / 15$

(H) Example 2

- Find the volume of the solid obtained by rotating the area bounded by $f(x)=x^{2}$ and $g(x)=x$ about the line $y=2$.
- ANS: $8 \pi / 15$
- http://archives.math.utk.edu/visual.calculus/5/volumes.5/ index.html
- 10

Calculus - Santowski 5/1/15

(I) Example 3

- Determine the volume of the solid obtained by rotating the region bounded by the functions $y=x$ and $y=x^{2}-2 x$ about the line $y=4$.
- ANS: $153 \pi / 5$
- http://tutorial.math.lamar.edu/Classes/Calcl/ VolumeWithRings.aspx
(J) Example 4
- Determine the volume of the solid obtained by rotating the region bounded by $\mathrm{y}=\mathrm{x}-\mathrm{I}$ and $\mathrm{y}=2 \sqrt{x-1}$ and about the line $x=-I$.
, ANS: $96 \pi / 5$
- http://tutorial.math.lamar.edu/Classes/Calcl/ VolumeWithRings.aspx
- 12

Calculus - Santowski 5/1/15

