

(A) APPLICATIONS OF DEFINITE INTEGRALS - MOTION PROBLEMS

- 1. An object starts at the origin and moves along the x -axis with a velocity $v(t)=10 t-t^{2}$ for $0 \leq t \leq 10$

(A) APPLICATIONS OF DEFINITE INTEGRALS - MOTION PROBLEMS

- 1. For the velocity functions given below for a particle moving along a line, determine the distance traveled and displacement of the particle:
- (a) What is the position of the object at any time, t ?
- (b) What is the position of the object at the moment when it reaches its maximum velocity?
- (c) How far has the object traveled before it starts to decelerate?

(A) APPLICATIONS OF DEFINITE INTEGRALS - MOTION PROBLEMS

- Two cars, who are beside each other, leave an intersection at the same instant. They travel along the same road. Car A travels with a velocity of $v(t)=t^{2}-t-6 \mathrm{~m} / \mathrm{s}$ while Car B travels with a velocity of $v(t)=0.5 t+2 \mathrm{~m} / \mathrm{s}$.
- (a) What are the initial velocities of the cars?
- (b) How far has each car gone after 4 seconds have elapsed?
- (c) When are the two cars beside each other again (i.e. when does the trailing car catch up to the leading car?)
\qquad

(B) General formula

- To find the area between 2 curves, we use the general formula

$$
\int_{a}^{b}(f(x)-g(x)) d x
$$

- Given that $y=f(x)$ and $y=g(x)$ are continuous on [a,b] and that $f(x) \geq g(x)$ on $[a, b]$

(C) Examples

- Sketch the curve of $f(x)=x^{3}-x^{4}$ between $x=0$ and $x=1$.
- (a) Draw a vertical line at $x=k$ such that the region between the curve and axis is divided into 2 regions of equal area. Determine the value of k.
- (b) Draw a horizontal line at $y=h$ such that the region between the curve and axis is divided into 2 regions of equal area. Estimate the value of h. Justify your estimation.

4/27/15
HL Math - Santowski

(C) Examples

- (a) Find the area bounded by

$$
f(x)=-x^{2}+1, g(x)=2 x+4, x=-1, \text { and } x=2
$$

- (b) Find the area between the curves

$$
h(x)=x^{2}-2 x \text { and } k(x)=x \text { on }[0,4]
$$

- (c) Find the region enclosed by $y=\sqrt{x}$ and $y=x^{3}$
- (d) Find the region enclosed by $y=\sin x$ and $y=\pi x-x^{2}$

4/27/15
HL Math - Santowski
10

(D) Area Under VT Graphs

cars as illustrated by their VT graphs

- We will let the two cars start at the same spot
- Here is the graph for Car II
- Calculate, highlight \& interpret:
(i) $v_{2}(4)$
(ii) $\int v_{2}(t) d t$
(iii) $\int_{0}^{5} v_{2}(t) d t$ (iv) $\int_{3}^{6} v_{2}(t) d t$
4/27/15 HL Math - Santowski

$$
v_{2}(t)=-\frac{1}{4}(t-4)^{2}+4
$$

 graphs

- We will let the two cars start at the same spot
- Here is the graph for Car 1
- Highlight, calculate \& interpret:
(i) $v_{1}(4)$
(ii) $\int v_{1}(t) d t$
(iii) $\int_{0}^{5} v_{1}(t) d t$
(iv) $\int_{3}^{6} v_{1}(t) d t$

4/27/15
HL Math - Santowski
$v_{1}(t)= \begin{cases}t & 0<t \leq 3 \\ 3 & 3<t \leq 7\end{cases}$

(D) Area Under VT Graphs

- Now let's add a new twist to this 2 car problem:
- Highlight, calculate and interpret:
(i) $\int\left(\mathrm{v}_{2}(t)-v_{1}(t)\right) d t$
(ii) $\int^{6}\left(v_{2}(t)-v_{1}(t)\right) d t$
(iii) $\int_{6}\left(\mathrm{v}_{1}(t)-v_{2}(t)\right) d t$
- Here are the two graphs:
-

Here are the tw

(D) Area Under VT Graphs

- Final question about the 2 - Here are the graphs again: cars:
- When do they meet again (since we have set the condition that they started at the same point)
- Explain how and why you set up your solution

Here are the graphs again

(E) Economics Applications

- Now let's switch applications to economics
- Our two curves will represent a marginal cost function and a marginal revenue function
- The equations are

- Here are the two curves

(E) Economics Applications

- Highlight, calculate and evaluate the following integrals:
(i) $\int^{4} \mathrm{MR}(\mathrm{t}) d t$
(ii) $\int_{1}^{4} \mathrm{MC}(\mathrm{t}) d t$
(iii) $\int^{4}(\operatorname{MR}(\mathrm{t})-M C(t)) d t$
- Here are the 2 functions:

(E) Economics Applications

Highlight, calculate and evaluate the following integrals:
(i) $\int^{754} \operatorname{MR}(\mathrm{t}) d t$
(ii) $\int_{475}^{4.75} \mathrm{MC}(\mathrm{t}) d t$
(iii) $\int_{4.75}^{7.54}(\mathrm{MC}(\mathrm{t})-\mathrm{MR}(t)) d t$

(E) Economics Applications

(A) Average Speed

- Suppose that the speed of an object is given by the equation $v(t)=12 t-t^{2}$ where v is in meters/sec and t is in seconds. How would we determine the average speed of the object between two times, say $\mathrm{t}=2 \mathrm{~s}$ and $\mathrm{t}=11 \mathrm{~s}$

(B) Average Temperature

- So to determine the average daily temperature, we could add all 1440 (24×60) times and divide by $1440 \rightarrow$ possible but tedious
- What happens if we extended the data for one full year (525960 minutes/data points)
- So we need an approximation method

4/27/15
HL Math - Santowski 27 \square

(B) Average Temperature

- So to approximate:
- (1) divide the interval $(0,24)$ into n equal subintervals, each of width $\Delta x=(\mathrm{b}-\mathrm{a}) / n$
- (2) then in each subinterval, choose x values, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$
- (3) then average the function values of these points: $\left[f\left(x_{1}\right)+\right.$ $\left.f\left(x_{2}\right)+\ldots .+f\left(x_{\mathrm{n}}\right)\right] / n$
- (4) but $\mathrm{n}=(\mathrm{b}-\mathrm{a}) / \Delta x$
- (5) so $f\left(x_{1}\right)+f\left(x_{2}\right)+\ldots . .+f\left(x_{\mathrm{n}}\right) /((\mathrm{b}-\mathrm{a}) / \Delta x)$
- (6) which is $1 /(\mathrm{b}-\mathrm{a})\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots . .+f\left(x_{\mathrm{n}}\right) \Delta x\right]$
- (7) so we get $1 /(\mathrm{b}-\mathrm{a}) \Sigma \mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \Delta x$

(B) Average Temperature

- Since we have a sum of $\frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
- Now we make our summation more accurate by increasing the number of subintervals between $\mathrm{a} \& \mathrm{~b}$:

$$
\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- Which is of course our integral

(B) Average Temperature

- So finally, average value is given by an integral of

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

- So in the context of our temperature model, the equation modeling the daily temperature for April 3 in Toronto was

$$
T(t)=7 \sin \left(\frac{5.5 t}{24}+11\right)+5
$$

- Then the average daily temp was

$$
\begin{gathered}
T_{\text {ave }}=\frac{1}{24} \int_{0}^{24}\left(7 \sin \left(\frac{5.5 t}{24}+11\right)+5\right) d t=6.7^{\circ} \\
\text { HL Math - Santowski }
\end{gathered}
$$

4/27/15

(D) Mean Value Theorem of Integrals

- Given the function $\mathrm{f}(\mathrm{x})=1+\mathrm{x}^{2}$ on the interval $[-1,2]$
- (a) Find the average value of $f(x)$

$$
f_{\text {oxe }}=\frac{1}{2-(-1)} \int_{-1}^{2}\left(1+x^{2}\right) d x=2
$$

- Question \Rightarrow is there a number in the interval at $\mathrm{x}=\mathrm{c}$ at which the function value at c equals the average value of the function?
- So we set the equation then as $f(c)=2$ and solve $2=1+c^{2}$
- Thus, at $c= \pm 1$, the function value is the same as the average value of the function

4/27/15
HL Math - Santowski

(E) Examples

- For the following functions, determine:
- (a) the average value on the interval
- (b) Determine c such that $\mathrm{f}_{\mathrm{c}}=\mathrm{f}_{\text {ave }}$
- (c) Sketch a graph illustrating the two equal areas (area under curve and under rectangle)
-

(i) $f(x)=4-x^{2},[0,2]$
(ii) $f(x)=x \sin \left(x^{2}\right),[0, \sqrt{\pi}]$
(iii) $f(x)=x^{3}-x+1,[0,2]$

4/27/15 HL Math - Santowski

