

Lesson Objectives

(A) Review

- But we have introduced a new symbol for our antiderivative \rightarrow the integral symbol (δ)
- So now we can put our relationships together
$A(x)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x=\int_{a}^{b} f(x) d x=\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$
- Where $\int_{a}^{b} f(x) d x$ is now referred to as a definite integral ${ }^{a}$
(B) The Fundamental Theorem of Calculus
- The fundamental theorem of calculus shows the connection between antiderivatives and definite integrals
- Let f be a continuous function on the interval $[a, b]$ and let F be any antiderivative of f. Then
$\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}$

4/27/15
HL Math - Santowski

(C) Examples

- Let's work with the FTC on the following examples:
(i) $\int\left(5 x^{2}-4 x+5\right) d x$ 5

(C) Examples

- Evaluate the following integrals:
(ii) $\int_{1}^{2} \frac{d y}{y}$
(iii) $\int^{\pi} \sin x d x$
(iv) $\int\left(2 e^{2 x}-5 \cos x\right) d x$

HL Math - Santowski
(42715
(a) $\int_{0}^{\frac{\pi}{3}}\left(\frac{2}{\pi} x-2 \sec ^{2} x\right) d x$
(b) $\int^{2}(\cos \theta+2 \sin \theta) d \theta$
(c) $\int_{-}^{e^{2}} \frac{3}{x} d x$
(d) $\int_{\ln 6}^{\ln 3} 8 e^{\prime} d t$

(E) Further Examples

- Let's work with the FTC on the following examples
(i) $\int\left(x^{2}-4\right) d x$
(ii) $\int^{3}\left(x^{2}-3 x\right) d x$
(iii) $\int_{0}^{4}\left(x^{2}-4\right) d x$

(E) Further Examples

(E) Further Examples

- Let's work with the FTC on the following examples.
(i) $\int_{0}^{4}\left(x^{2}-4\right) d x$
(ii) $\int\left(x^{2}-3 x\right) d x$
(iii) $\int_{0}^{4} \mid x^{2}-4 d x$
(iv) Find the TOTAL between the x-axis
and the function $y=x^{2}-3 x$
HL Math - Santowski

(E) Further Examples

Evaluate and interpret the definite integral in terms of areas.

$$
\int_{0}^{4}\left(x^{3}-7 x^{2}+11 x\right) d x
$$

(E) Further Examples

- So the answer to the question of interpreting the definite integral $\int\left(x^{3}-7 x^{2}+11 x\right) d x$ in terms of areas is:
- (i) 2.67 if the interpretation is as the difference between the positive area and the negative area (NET area)
- (ii) 12.77 if we interpret the answer to mean the TOTAL area of the regions

(E) Further Examples

- We are going to set up a convention here in that we would like the area to be interpreted as a positive number when we are working on TOTAL Area interpretations of the DI
- So, we will take the absolute value of negative "areas" or values
- Then the second consideration will be when a function has an x-intercept in the interval $[a, b] \rightarrow$ we will then break the area into 2 (or more) sub-intervals $[a, c] \&[c, b]$ and work with 2 separate definite integrals

4/27/15
HL Math - Santowski

(F) DEFINITE INTEGRALS \& DISCONTINUOUS FUNCTIONS

- Evaluate the following definite integrals:
(a) $\int^{5}|x-3| d x$
(b) $\int^{2}\left|x^{2}-1\right| d x$
(c) $\int_{-2}^{4} f(x) d x$ where $f(x)= \begin{cases}2+x^{2} & x<0 \\ \frac{1}{2} x+2 & x \geq 0\end{cases}$
(d) $\int_{0}^{\frac{3 \pi}{2}} f(x) d x$ where $f(x)=\left\{\begin{array}{cc}2 \sin x & x \leq \frac{\pi}{2} \\ 2+\cos x & x>\frac{\pi}{2}\end{array}\right.$

HL Math - Santowski

(G) APPLICATIONS OF DEFINITE

 INTEGRALS - MOTION PROBLEMS- 1. An object starts at the origin and moves along the x -axis with a velocity $v(t)=10 t-t^{2}$ for $0 \leq t \leq 10$
(a) What is the position of the object at any time, t ?
- (b) What is the position of the object at the moment when it reaches its maximum velocity?
- (c) How far has the object traveled before it starts to decelerate?

(G) APPLICATIONS OF DEFINITE

INTEGRALS - MOTION PROBLEMS

- 1. For the velocity functions given below for a particle moving along a line, determine the distance traveled and displacement of the particle:
- (a) $v(t)=3 t-5,0 \leq t \leq 3$
(b) $\mathrm{v}(\mathrm{t})=t^{2}-2 t-8,1 \leq t \leq 6$
- 2. The acceleration function and the initial velocity are given for a particle moving along a line. Determine (a) the velocity at time t and (b) the distance traveled during the given time interval:
- (a) $a(t)=t+4, v(0)=5,0 \leq t \leq 10$
(b) $a(t)=2 t+3, v(0)=-4,0 \leq t \leq 3$

4/27/15
HL Math - Santowski
(G) APPLICATIONS OF DEFINITE INTEGRALS - MOTION PROBLEMS

- Two cars, who are beside each other, leave an intersection at the same instant. They travel along the same road. Car A travels with a velocity of $v(t)=t^{2}-t-6 \mathrm{~m} / \mathrm{s}$ while Car B travels with a velocity of $v(t)=0.5 t+2 \mathrm{~m} / \mathrm{s}$.
- (a) What are the initial velocities of the cars?
- (b) How far has each car gone after 4 seconds have elapsed?
- (c) When are the two cars beside each other again (i.e. when does the trailing car catch up to the leading car?)
$42715-18$
18

