

(A) The Area Problem - An Example

- To estimate the area under the curve, we will divide the are into simple rectangles as we can easily find the area of rectangles $\rightarrow A=1 \times w$
Each rectangle will have a width of Δx which we calculate as $(b-a) / n$ where b represents the higher bound on the area (i.e. $x=3$) and a represents the lower bound on the area (i.e. $x=0$) and n represents the number of rectangles we want to construct
- The height of each rectangle is then simply calculated using the function equation
- Then the total area (as an estimate) is determined as we sum the areas of the numerous rectangles we have created under the curve
- $A_{T}=A_{1}+A_{2}+A_{3}+\ldots .+A_{n}$
- We can visualize the process on the next slide

(A) The Area Problem - An Example

- In our previous slide, we used 6 rectangles which were constructed using a "right end point" (realize that both the use of 6 rectangles and the right end point are arbitrary!) \rightarrow in an increasing function like $f(x)=x^{2}+2$ this creates an over-estimate of the area under the curve
- So let's change from the right end point to the left end point and see what happens

(A) The Area Problem - An Example

- So our "left end point" method (now called a left hand Riemann sum) gives us an underestimate (in this example)
- Our "right end point" method (now called a right handed Riemann sum) gives us an overestimate (in this example)
- Recall that ce can adjust our strategy in a variety of ways $\boldsymbol{\rightarrow}$ one is by adjusting the "end point" \rightarrow why not simply use a "midpoint" in each interval and get a mix of over- and under-estimates.
- OR we can construct trapezoids OR
(B) The Area Problem - Expanding our Example
- Now back to our left and right Riemann sums and our original example \rightarrow how can we increase the accuracy of our estimate?
- We simply increase the number of rectangles that we construct under the curve
- Initially we chose 6 , now let's choose a few more ... say 12,60 , and $300 \ldots$...

(C) The Area Problem - Conclusion

- We have seen the following general formula used in the preceding examples:
- $\mathrm{A}=\mathrm{f}\left(\mathrm{x}_{1}\right) \Delta \mathrm{x}+\mathrm{f}\left(\mathrm{x}_{2}\right) \Delta \mathrm{x}+\ldots .+\mathrm{f}\left(\mathrm{x}_{\mathrm{i}}\right) \Delta \mathrm{x}+\ldots . .+\mathrm{f}\left(\mathrm{x}_{\mathrm{n}}\right) \Delta \mathrm{x}$ as we have created n rectangles
- Since this represents a sum, we can use summation notation to re-express this formula $\rightarrow A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
- So this is the formula for our Riemann sum

(E) Exact Areas - Example \#1

- Find the area under the function $y=4 x-2$ between $x=1$ and $x=3$ using:
- (a) using 4 rectangles \& RRAM
- (b) using geometry
- (c) Using an infinite number of rectangles $=>$ hence a LIMIT idea

(D) The Area Problem - Exact Areas

- Now to make our estimate more accurate, we simply made more rectangles \rightarrow how many more though? \rightarrow why not an infinite amount (use the limit concept as we did with our tangent/secant issue in differential calculus!)
- Then we arrive at the following "formula":

$$
A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

$\left.\begin{array}{rl}(\mathrm{E}) \text { Exact Areas - Example \#1 }\end{array}\right]$| Find the area under the function $\mathrm{y}=4 \mathrm{x}-2$ between | |
| ---: | :--- |
| $\mathrm{x}=1$ and x | $=3$ using 4 rectangles \& RRAM: |
| A | $=f\left(x_{1}\right) \Delta x_{1}+f\left(x_{2}\right) \Delta x_{2}+f\left(x_{3}\right) \Delta x_{3}+f\left(x_{4}\right) \Delta x_{4}$ |
| A | $=f(1.5) \times \frac{1}{2}+f(2) \times \frac{1}{2}+f(2.5) \times \frac{1}{2}+f(3) \times \frac{1}{2}$ |
| A | $=4 \times \frac{1}{2}+6 \times \frac{1}{2}+8 \times \frac{1}{2}+10 \times \frac{1}{2}$ |
| A | $=\frac{1}{2} \times(4+6+8+10)$ |
| A | $=\frac{1}{2} \times 28=14$ |

(E) Exact Areas - Example \#1
 (21)

- Find the area under the function $y=4 x-2$ between $\mathrm{x}=1$ and $\mathrm{x}=3$ using limits of $\#$ of rectangles:

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& \text { where } \Delta x=\frac{b-a}{n}=\frac{2}{n} ; \\
& \text { where } x_{i}=a+i \Delta x=1+\frac{2 i}{n} ; \\
& \text { where } f\left(x_{i}\right)=f\left(1+\frac{2 i}{n}\right)=4\left(1+\frac{2 i}{n}\right)-2=2+\frac{8 i}{n}
\end{aligned}
$$

(E) Exact Areas - Example \#2

- Find the EXACT area under the function $y=2 x+3$ between $\mathrm{x}=1$ and $\mathrm{x}=3$
- For complete solution \& explanation, watch video:
- https://www.youtube.com/watch?v=bw23lWXpAlc

(E) Exact Areas - Example \#3

(24)

- Find the exact area under the curve of $y=x^{2}$ between $\mathrm{x}=\mathrm{o}$ and $\mathrm{x}=1$
- VIDEO LINK to worked soln:
- https://www.youtube.com/watch?v=ebCVej2wlCo

(E) Exact Areas - Example \#5 (26)

- Find the EXACT area under the function $y=x^{3}$ between $\mathrm{x}=1$ and $\mathrm{x}=0$
- Here is a link to the detailed steps of the solution:
- http://goblues.org/faculty/kollathl/files/2010/08/

Finding-Area-Using-Infinite-Rectangles.pdf

- And here is a link to a video showing the process for $\mathrm{f}(\mathrm{x})=64-\mathrm{x}^{3} \rightarrow$
https://www.youtube.com/watch?v=DVmFoeyARSc

(E) Exact Areas - Example \#6

- So our formula is: $\quad A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x$
- Now we need to work out just what $f\left(\mathrm{x}_{\mathrm{i}}\right)$ and $\Delta \mathrm{x}$ are equal to so we can sub them into our formula:
- $\Delta \mathrm{x}=(b-a) / n=(2-0) / \mathrm{n}=2 / \mathrm{n}$
- x_{i} simply refers to the any endpoint on any one of the many rectangles \rightarrow so let's work with the $i^{\text {th }}$ endpoint on the $i^{\text {th }}$ rectangle \rightarrow so in general, $\mathrm{x}_{\mathrm{i}}=a+\mathrm{i} \Delta \mathrm{x}$
(E) Exact Areas - Example \#6

(E) Exact Areas - Example \#6

- Now back to the formula in which $\Delta x=2 / n$ and $x_{i}=0+i \Delta x$ or $x_{i}=2 i / n$

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& \left.A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{3}-x_{i}^{2}-2 x_{i}-1\right) \frac{2}{n}\right) \\
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{2 i}{n}\right)^{3}-\left(\frac{2 i}{n}\right)^{2}-2\left(\frac{2 i}{n}\right)-1\right)\left(\frac{2}{n}\right) \\
& A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\left(\frac{16 i^{3}}{n^{4}}\right)-\left(\frac{8 i^{2}}{n^{3}}\right)-\left(\frac{8 i^{1}}{n^{2}}\right)-\left(\frac{2}{n}\right)\right) \\
& A=\lim _{n \rightarrow \infty}\left[\frac{16}{n^{4}} \sum_{i=1}^{n} i^{3}-\frac{8}{n^{3}} \sum_{i=1}^{n} i^{2}-\frac{8}{n^{2}} \sum_{i=1}^{n} i^{1}-\frac{2}{n} \sum_{i=1}^{4} 1\right]
\end{aligned}
$$

