

(A) REVIEW

- We have looked at the process of antidifferentiation (given the derivative, can we find the "original" equation?)
- Then we introduced the indefinite integral \rightarrow which basically involved the same concept of finding an "original"equation since we could view the given equation as a derivative
- We introduced the integration symbol $\boldsymbol{\rightarrow} \int$
- Now we will move onto a second type of integral \rightarrow the definite integral

(B) THE AREA PROBLEM

- to introduce the second kind of integral : Definite Integrals \rightarrow we will take a look at "the Area Problem" \rightarrow the area problem is to definite integrals what the tangent and rate of change problems are to derivatives
- The area problem will give us one of the interpretations of a definite integral and it will lead us to the definition of the definite integral.

(B) THE AREA PROBLEM

- Let's work with
simple quadratic
function, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$
and use a specific interval of $[0,3]$
- Now we wish to find the area under this curve

(C) THE AREA PROBLEM - AN
 EXAMPLE

- To estimate the area under the curve, we will divide the are into simple rectangles as we can easily find the area of
rectangles $\rightarrow A=1 \times w$
- Each rectangle will have a width of $\Delta \mathrm{x}$ which we calculate as $(b-a) / n$ where b represents the higher bound on the area (i.e. $\mathrm{x}=3$) and a represents the lower bound on the area (i.e. $\mathrm{x}=0$) and n represents the number of rectangles we want to construct
- The height of each rectangle is then simply calculated using the function equation
- Then the total area (as an estimate) is determined as we sum the areas of the numerous rectangles we have created under the curve
- $\mathrm{A}_{\mathrm{T}}=\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}+\ldots . .+\mathrm{A}_{\mathrm{n}}$
- We can visualize the process on the next slide

(C) THE AREA PROBLEM - AN

 EXAMPLE

- We have chosen to draw 6 rectangles on the interval [0,3]
- $\mathrm{A}_{1}=1 / 2 \times \mathrm{f}(1 / 2)=1.125$
- $\mathrm{A}_{2}=1 / 2 \times \mathrm{f}(1)=1.5$
- $\mathrm{A}_{3}=1 / 2 \times \mathrm{f}\left(1^{1 / 2}\right)=2.125$
- $\mathrm{A}_{4}=1 / 2 \times \mathrm{f}(2)=3$
- $\mathrm{A}_{5}=1 / 2 \times \mathrm{f}\left(2^{1 / 2}\right)=4.125$
- $\mathrm{A}_{6}=1 / 2 \times \mathrm{f}(3)=5.5$
$\circ \mathrm{A}_{\mathrm{T}}=17.375$ square units
- So our estimate is 17.375 which is obviously an overestimate

(C) THE AREA PROBLEM - AN EXAMPLE

- In our previous slide, we used 6 rectangles which were constructed using a "right end point" (realize that both the use of 6 rectangles and the right end point are arbitrary!) $\boldsymbol{\rightarrow}$ in an increasing function like $f(x)=x^{2}+2$ this creates an overestimate of the area under the curve
- So let's change from the right end point to the left end point and see what happens

(C) THE AREA PROBLEM - AN

 EXAMPLEWe have chosen to draw 6 rectangles on the interval $[0,3]$

- $\mathrm{A}_{1}=1 / 2 \times \mathrm{f}(0)=1$
$\mathrm{A}_{2}=1 / 2 \times \mathrm{f}(1 / 2)=1.125$
- $\mathrm{A}_{3}=1 / 2 \times \mathrm{f}(1)=1.5$
$\mathrm{A}_{4}=1 / 2 \times \mathrm{f}\left(1^{1 / 2}\right)=2.125$
- $\mathrm{A}_{5}=1 / 2 \times \mathrm{f}(2)=3$
- $\mathrm{A}_{6}=1 / 2 \times \mathrm{f}\left(2^{1 / 2}\right)=4.125$
- $\mathrm{A}_{\mathrm{T}}=12.875$ square unit

So our estimate is 12.875 which is obviously an under-estimate

(C) THE AREA PROBLEM - AN EXAMPLE

- So our "left end point" method (now called a left rectangular approximation method LRAM) gives us an underestimate (in this example)
- Our "right end point" method (now called a right rectangular approximation method RRAM) gives us an overestimate (in this example)
- We can adjust our strategy in a variety of ways \rightarrow one is by adjusting the "end point" $\boldsymbol{\rightarrow}$ why not simply use a "midpoint" in each interval and get a mix of over- and under-estimates? $\boldsymbol{\rightarrow}$ see next slide

(C) THE AREA PROBLEM - AN EXAMPLE

- We have chosen to draw 6 ectangles on the interval [0,3]
- $\mathrm{A}_{1}=1 / 2 \times \mathrm{f}(1 / 4)=1.03125$
- $\mathrm{A}_{2}=1 / 2 \times \mathrm{f}(3 / 4)=1.28125$ - $\mathrm{A}_{3}=1 / 2 \times \mathrm{f}\left(1^{1 / 4}\right)=1.78125$ $\mathrm{A}_{4}=1 / 2 \times \mathrm{f}\left(1^{3 / 4}\right)=2.53125$ $\mathrm{A}_{5}=1 / 2 \times \mathrm{f}\left(2^{1 / 4}\right)=3.5312$. - $\mathrm{A}_{6}=1 / 2 \times \mathrm{f}\left(2^{3 / 4}\right)=4.78125$ $\mathrm{A}_{\mathrm{T}}=14.9375$ square units which is a more accurate stimate (15 is the exact answer)

(C) THE AREA PROBLEM - AN

 EXAMPLE- We have chosen to draw 6
trapezoids on the interval $[0,3]$

- $\mathrm{A}_{1}=1 / 2 \times 1 / 2[\mathrm{f}(0)+\mathrm{f}(1 / 2)]=1.0625$ - $\mathrm{A}_{2}=1 / 2 \times 1 / 2[\mathrm{f}(1 / 2)+\mathrm{f}(1)]=1.3125$ - $\mathrm{A}_{3}=1 / 2 \times 1 / 2\left[\mathrm{f}(1)+\mathrm{f}\left(1^{1 / 2}\right)\right]=1.8125$ $\mathrm{A}_{4}=1 / 2 \times 1 / 2\left[\mathrm{f}\left(1^{1 / 2}\right)+\mathrm{f}(2)\right]=2.5625$ - $\mathrm{A}_{5}=1 / 2 \times 1 / 2[\mathrm{f}(0)+\mathrm{f}(1 / 2)]=3.5625$
- $\mathrm{A}_{6}=1 / 2 \times 1 / 2[\mathrm{f}(0)+\mathrm{f}(1 / 2)]=4.8125$
- $\mathrm{A}_{\mathrm{T}}=15.125$ square units
(15 is the exact answer)

(D) THE AREA PROBLEM CONCLUSION

- We have seen the following general formula used in the preceding examples:
- $A=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{i}\right) \Delta x+\ldots .+f\left(x_{n}\right) \Delta x$ as we have created n rectangles
- Since this represents a sum, we can use summation notation to re-express this formula \rightarrow

$$
A=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

- So this is the formula for our rectangular approximation method

(E) RIEMANN SUMS - INTERNET

 INTERACTIVE EXAMPLE- Visual Calculus - Riemann Sums
- And some further worked examples showing both a graphic and algebraic representation:
- http://www.intmath.com/integration/riemannsums.php
- http://mathworld.wolfram.com/ RiemannSum.html

```
1. a) Approximate the area under the graph of f(x)=\frac{1}{x}}\mathrm{ from }x=1\mathrm{ to }x=5\mathrm{ using the righ
        dpoints of four subintervals of equel
        estimate an underestimate or an overestimate?
    b) Repeat part a) using leff endpoints.
2. Approximate the area under the graph of f(x)=25-\mp@subsup{x}{}{2}}\mathrm{ from }x=0\mathrm{ to }x=5\mathrm{ using the
    midpoints of five subintervals of equal length. Sketch the graph and the rectangles.
3. a) Approximate the area under the graph of f(x)=\mp@subsup{x}{}{2}+1\mathrm{ from }x=-1\mathrm{ to }x=2\mathrm{ using the}
        right endpoints of three subintervals of equal length. Sketch the graph and the rectangles.
    Improve your estimate by usingsix subintervals.
    c) Repeat parts a) and b) using left endpoints
    Repeat parts a) and b) using midpoints.
    e) From your sketches in parts a), c), and d), which appears to be the best estimate?
```


(F) THE AREA PROBLEM - EXAMPLES

- Find the area between the curve $f(x)=x^{3}-5 x^{2}+6 x+5$ and the x-axis on $[0,4]$ using 5 intervals and using right- and left- and midpoint Riemann sums.
- Verify with technology.

(F) THE AREA PROBLEM - EXAMPLES

(F) THE AREA PROBLEM - EXAMPLES

- Graph the function given below over the interval $x=-1$ to $x=2$. Estimate the area under the graph of f using three approximating rectangles and taking the sample points to be:
- a. Right endpoints
$f(x)=\frac{1}{1+x^{2}}$
○ b. Left endpoints
o c. Midpoints
○ d. Trapezoids
the the $f(x)>0$ for $[0,1]$. Selected values of $f(x)$ are given in the

table below. Use the table of values to approximate the area under $f(x)$ using the Riemann Sum indicated. | x | 0 | 0.25 | 0.5 | 0.75 | 1.0 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $f(x)$ | 1.0 | 0.8 | 1.3 | 1.1 | 1.6 |

a) Trapezoidal Approximation using 4 subintervals
c) Midpoint Rectangular Approximation using 2 subintervals

(F) THE AREA PROBLEM - EXAMPLES

- Let's put the area under the curve idea into a physics application: using a v-t graph, we can determine the distance traveled by the object
- During a three hour portion of a trip, Mr. S notices the speed of his car (rate of change of distance) and writes down the info on the following chart:

Time (hr)	0	1	2	3
Speed $(\mathrm{m} / \mathrm{h})$	60	48	58	63

- Q: Use LHRS, RHRS \& MPRS to estimate the total change in distance during this 3 hour portion of the trip

(G) THE AREA PROBLEM FURTHER EXAMPLES

- So from our last example, an interesting point to note:
- The function/curve that we started with
represented a rate of change of distance function, while the area under the curve represented a total/accumulated change in distance

(F) THE AREA PROBLEM - EXAMPLES

- Coal gas is produced at a gasworks. Pollutants are removed by screens which become less efficient as time goes on. Measurements are made every two months showing the rate at which pollutants escape.

Time (months)	0	2	4	6
Rate (tons/month)	5	8	13	20

- Find the amount of pollutants that escape using:

```
A swimming pool with a 
Mectangular surface is 30 ft wide
l
shows the depth }h(x)\mathrm{ of the
water at 5-ft intervals from one
```



```
    of the pool to the other.
        a) Estimate the lateral area of the pool using a Riemann sum with the midpoints of five
            b) Uset his information to calculate the volume of water in the pool. (tint: remember hat the
    |Position(f):x
    loph(f):. \
```

o a. lower estimate

(I) INTERNET LINKS

- Calculus I (Math 2413) - Integrals - Area

Problem from Paul Dawkins

- Integration Concepts from Visual Calculus

