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Lesson 46 – Area Under the 
Curve – Riemann Sums 
Calculus - Santowski 
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(A) REVIEW  

 We have looked at the process of anti-
differentiation (given the derivative, can we find 
the “original” equation?) 

 Then we introduced the indefinite integral  
which basically involved the same concept of 
finding an “original”equation since we could view 
the given equation as  a derivative 

 We introduced the integration symbol   ∫  

 Now we will move onto a second type of integral 
 the definite integral 
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(B) THE AREA PROBLEM 

 to introduce the second kind of integral : 
Definite Integrals  we will take a look at 
“the Area Problem”  the area problem is 
to definite integrals what the tangent and 
rate of change problems are to derivatives. 

 The area problem will give us one of the 
interpretations of a definite integral and it 
will lead us to the definition of the definite 
integral. 
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(B) THE AREA PROBLEM 
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 Let’s work with a 
simple quadratic 
function, f(x) = x2 + 2 
and use a specific 
interval of [0,3] 

 Now we wish to find 
the area under this 
curve 

(C) THE AREA PROBLEM – AN 
EXAMPLE 

  To estimate the area under the curve, we will divide the 
are into simple rectangles as we can easily find the area of 
rectangles  A = l × w 

  Each rectangle will have a width of Δx which we calculate 
as (b – a)/n where b represents the higher bound on the 
area (i.e. x = 3) and a represents the lower bound on the 
area (i.e. x = 0) and n represents the number of rectangles 
we want to construct 

  The height of each rectangle is then simply calculated 
using the function equation 

  Then the total area (as an estimate) is determined as we 
sum the areas of the numerous rectangles we have created 
under the curve 

  AT = A1 + A2 + A3 + ….. + An 
  We can visualize the process on the next slide 
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(C) THE AREA PROBLEM – AN 
EXAMPLE 
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  We have chosen to draw 6 
rectangles on the interval 
[0,3] 

  A1 = ½ × f(½) = 1.125 
  A2 = ½ × f(1) = 1.5 
  A3 = ½ × f(1½) = 2.125 
  A4 = ½ × f(2) = 3 
  A5 = ½ × f(2½) = 4.125 
  A6 = ½ × f(3) = 5.5 
  AT = 17.375 square units 
  So our estimate is 17.375 

which is obviously an 
overestimate 
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(C) THE AREA PROBLEM – AN 
EXAMPLE 

 In our previous slide, we used 6 rectangles 
which were constructed using a “right end 
point” (realize that both the use of 6 
rectangles and the right end point are 
arbitrary!)  in an increasing function 
like f(x) = x2 + 2 this creates an over-
estimate of the area under the curve 

 So let’s change from the right end point to 
the left end point and see what happens 
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(C) THE AREA PROBLEM – AN 
EXAMPLE 
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  We have chosen to draw 6 
rectangles on the interval 
[0,3] 

  A1 = ½ × f(0) = 1 
  A2 = ½ × f(½) = 1.125 
  A3 = ½ × f(1) = 1.5 
  A4 = ½ × f(1½) = 2.125 
  A5 = ½ × f(2) = 3 
  A6 = ½ × f(2½) = 4.125 
  AT = 12.875 square units 
  So our estimate is 12.875 

which is obviously an 
under-estimate 

(C) THE AREA PROBLEM – AN 
EXAMPLE 

 So our “left end point” method (now called a left 
rectangular approximation method LRAM) gives 
us an underestimate (in this example) 

 Our “right end point” method (now called a right 
rectangular approximation method RRAM) gives 
us an overestimate (in this example) 

 We can adjust our strategy in a variety of ways 
 one is by adjusting the “end point”  why not 
simply use a “midpoint” in each interval and get 
a mix of over- and under-estimates?  see next 
slide 
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(C) THE AREA PROBLEM – AN 
EXAMPLE 

4/15/15 
C

alculus - Santow
ski 

10 

  We have chosen to draw 6 
rectangles on the interval 
[0,3] 

  A1 = ½ × f(¼) = 1.03125 
  A2 = ½ × f (¾) = 1.28125 
  A3 = ½ × f(1¼) = 1.78125 
  A4 = ½ × f(1¾) = 2.53125 
  A5 = ½ × f(2¼) = 3.53125 
  A6 = ½ × f(2¾) = 4.78125 
  AT = 14.9375 square units 

which is a more accurate 
estimate (15 is the exact 
answer) 

(C) THE AREA PROBLEM – AN 
EXAMPLE 
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  We have chosen to draw 6 
trapezoids on the interval [0,3] 

  A1 = ½ × ½[f(0) + f(½)] = 1.0625 
  A2 = ½ × ½[f(½) + f(1)] = 1.3125 
  A3 = ½ × ½[f(1) + f(1½)] = 1.8125 
  A4 = ½ × ½[f(1½) + f(2)] = 2.5625 
  A5 = ½ × ½[f(0) + f(½)] = 3.5625 
  A6 = ½ × ½[f(0) + f(½)] = 4.8125 

  AT = 15.125 square units 

  (15 is the exact answer) 

(D) THE AREA PROBLEM - 
CONCLUSION 

 We have seen the following general formula used 
in the preceding examples: 

 A = f(x1)Δx + f(x2)Δx + … + f(xi)Δx + …. + f(xn)Δx    
as we have created n rectangles 

 Since this represents a sum, we can use 
summation notation to re-express this formula   

 So this is the formula for our rectangular 
approximation method  
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A = f xi( )Δx
i=1

n

∑
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(E) RIEMANN SUMS – INTERNET 
INTERACTIVE EXAMPLE 

 Visual Calculus - Riemann Sums 

 And some further worked examples showing both 
a graphic and algebraic representation: 

 http://www.intmath.com/integration/riemann-
sums.php  

 http://mathworld.wolfram.com/
RiemannSum.html  
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(F) THE AREA PROBLEM – EXAMPLES 
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(F) THE AREA PROBLEM – EXAMPLES 

4/15/15 
C

alculus - Santow
ski 

15 

(F) THE AREA PROBLEM – EXAMPLES 

 Find the area between the curve     
f(x) = x3 – 5x2 + 6x + 5 and the x-axis 
on [0,4] using 5 intervals and using 
right- and left- and midpoint 
Riemann sums.  

 Verify with technology. 
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(F) THE AREA PROBLEM – EXAMPLES 

 Graph the function given below over the interval 
x = -1 to x = 2. Estimate the area under the graph 
of f using three approximating rectangles and 
taking the sample points to be: 

  a.  Right endpoints    
  b.  Left endpoints    
  c.  Midpoints    
  d.  Trapezoids 
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f (x) =
1

1+ x2

(F) THE AREA PROBLEM – EXAMPLES 
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(F) THE AREA PROBLEM – EXAMPLES 

  Let’s put the area under the curve idea into a physics 
application: using a v-t graph, we can determine the 
distance traveled by the object 

  During a three hour portion of a trip, Mr. S notices the 
speed of his car (rate of change of distance) and writes 
down the info on the following chart: 

  Q: Use LHRS, RHRS & MPRS to estimate the total change 
in distance during this 3 hour portion of the trip 
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Time (hr) 0 1 2 3 
Speed (m/h) 60 48 58 63 

(G) THE AREA PROBLEM – 
FURTHER EXAMPLES 

 So from our last example, an interesting point to 
note: 

 The function/curve that we started with 
represented a rate of change of distance 
function, while the area under the curve 
represented a total/accumulated change in 
distance 
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(F) THE AREA PROBLEM – EXAMPLES 

 Coal gas is produced at a gasworks.  Pollutants 
are removed by screens which become less 
efficient as time goes on.  Measurements are 
made every two months showing the rate at 
which pollutants escape.. 

 Find the amount of pollutants that escape using: 
  a.  lower estimate 
  b.  upper estimate  
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Time	
  (months) 0 2 4 6 
Rate	
  (tons/month) 5 8 13 20 

(F) THE AREA PROBLEM – EXAMPLES 
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(I) INTERNET LINKS 

 Calculus I (Math 2413) - Integrals - Area 
Problem from Paul Dawkins 

  Integration Concepts from Visual Calculus 
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