

A function F is an antiderivative of f on anterval I if $F^{\prime}(x)=f(x)$ for all x in I.

Let's use an example to figure out what this statement means.
Suppose we know $f(x)=2 x$ and we want to find its antiderivative, F.
If $f(x)=2 x$, then $F^{\prime}(x)=2 x$. So we know the derivative of F.

Think backwards, what function has a derivative equal to $2 x$?
$F(x)=x^{2}!!!$
To find the antiderivative, do the reverse of finding the derivative.
Is $F(x)=x^{2}$ the only function whose derivative is $2 x$? Or in other calauwerds, is $F(x)=x^{2}$ the only antiderivative of $2 x$?

Theorem 1: Let G be an antiderivative of a function f. Then, every antiderivative F of f must be of the form $F(x)=G(x)+C$, where C is a constant

So the answer to the question is $F(x)=x^{2}$ the only antiderivative of $2 x$ is NO!!

Example 1: Let $F(x)=x^{2}+4$ and let $G(x)=x^{2}-1$ Then $F^{\prime}(x)=2 x$ and $G^{\prime}(x)=2 x$

Thus both F and G are antiderivatives of $f(x)=2 x$. Note two functions which have the same derivative will only differ by the constant.

This means the antiderivative of a function is a family of functions as pictured on the next slide.

Basic Integration Rules

```
Rule 1: }\intkdx=kx+C (k, a constant
```

The process of finding all antiderivatives of a function is called antidifferentiation, or integration.
\int is the symbol used for integration and is called the integral symbol.

We write $\int f(x) d x=F(x)+C$
$d x \rightarrow$ is the differential of x which denotes the variable of integration
This is called an indefinite integral, $f(x)$ is called the integrand and C is called the constant of integration. Calculus - Santowski 5 4/12/15

Before we list Rule 2, let's go back and think about derivatives.
When we used the power rule to take the derivative of a power, we multiplied by the power and subtracted one from the exponent.

Example:

$$
\frac{d}{d x}\left(x^{3}\right)=3 x^{2}
$$

Since the opposite of multiplying is dividing and the opposite of subtracting is adding, to integrate we'd do the opposite. So, let's try adding 1 to the exponent and dividing by the new exponent.

Integrating: $\int x^{3} d x=\frac{x^{3+1}}{3+1}=\frac{1}{4} x^{4}$
Check by differentiating the result: $\quad \frac{d}{d x}\left(\frac{1}{4} x^{4}\right)=\frac{4}{4} x^{3}=x^{3}$
Since we get the integrand we know it works. 4/12/15

Here are more examples of Rule 1 and Rule 2.
Example 6: Find the indefinite integral $\int \frac{1}{x^{3}} d x$
Solution: $\int \frac{1}{x^{3}} d x=\int x^{-3}=\frac{x^{-3+1}}{-3+1}+C=\frac{x^{-2}}{-2}+C=\frac{-1}{2 x^{2}}+C$

Example 7: Find the indefinite integral $\int 1 \mathrm{~d} x$
Solution: $\int 1 d x=x+C$

Example 8: Find the indefinite integral $\int-3 x^{-2} d x$

Solution: $\int-3 x^{-2} d x=-3 \int x_{9}^{-2}=\frac{-3 x^{-2+1}}{-2+1}+C=\frac{-3 x^{-1}}{-1}+C=\frac{3}{x}+C$

Integrate and check your answer by taking the derivative
(a) $\int 3+x^{4}+e^{x} d x$
(b) $\int\left(2 x-\frac{1}{x}+\frac{3}{x^{2}}+\sqrt{x}+3 e^{x}\right) d x$
(c) $\int(2 x-4)\left(\frac{1}{x^{2}}+\frac{3}{x}\right) d x$

Basic Integration Rules
Rule 2: The Power Rule $\int x^{n}=\frac{x^{n+1}}{n+1}+C \quad n \neq-1$

Example 4: Find the indefinite integral $\int \mathrm{t}^{3} \mathrm{dt}$

Solution: $\int \mathrm{t}^{3} \mathrm{dt}=\frac{\mathrm{t}^{4}}{4}+\mathrm{C}$

Example 5: Find the indefinite integral $\int x^{\frac{3}{2}} d x$

Solution:

$$
\int x^{\frac{3}{2}} d x=\frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1}+C=\frac{x^{\frac{5}{2}}}{\frac{5}{2}}+C=\frac{2}{5} x^{\frac{5}{2}}+C
$$ 4/12/15

Basic Integration Rules

Rule 3: The Indefinite Integral of a Constant Multiple of a Function
$\int c f(x) d x=c \int f(x) d x, c$ is a constant

Rule 4: The Sum Rule (or difference)
$\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$
$\int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x$
Rule 5: $\quad \int e^{x} d x=e^{x}+C$

Rule 6: $\quad \int \frac{1}{x} d x=\ln |x|+C \quad$ To check these 2 rules, differentiate the result and you'll see that it matches Calculus-Santowski the integrand.

Here is the solution for $Q(a)$ in detail.
(a) $\int 3+x^{4}+e^{x} d x=\int 3 d x+\int x^{4} d x+\int e^{x} d x$
$=3 x+\frac{x^{4+1}}{4+1}+e^{x}+C$
$=3 x+\frac{1}{5} x^{5}+e^{x}+C$

$$
\begin{aligned}
& \text { Q(b) Integrate } \int\left(2 x-\frac{1}{x}+\frac{3}{x^{2}}+\sqrt{x}+3 e^{x}\right) d x \\
& \text { Using the sum rule we separate this into } 5 \text { problems. }
\end{aligned}
$$

$$
\int 2 x d x-\int \frac{1}{x} d x+\int \frac{3}{x^{2}} d x+\int \sqrt{x} d x+\int 3 e^{x} d x
$$

ANSWER:
$\int 2 x d x-\int \frac{1}{x} d x+\int \frac{3}{x^{2}} d x+\int \sqrt{x} d x+\int 3 e^{x} d x=x^{2}-\ln |x|-\frac{3}{x}+\frac{2}{3} x^{\frac{3}{2}}+3 e^{x}+C$ You may be wondering why we didn't use the C before now. Let's say that we had five constants $C_{1}+C_{2}+C_{3}+C_{4}+C_{5}$. Now we add all of them together and call them C. In essence that's what's going on above.
Calculus-Santonski 13

Differential Equations

A differential equation is one which has a derivative expression in it.

For example: $f^{\prime}(x)=2 x+1$ is a differential equation. When we integrate this type of equation we get the general solution which contains the constant, C.

To find a particular solution we need another piece of
information. It could be a point that we know the
function passes through. We call this piece of
information the initial condition.

A typical problem might be:
$f^{\prime}(x)=3 x^{2}-4 x+8$
$f(1)=9$
Calculus - Santowski 15 4/12/15

Let's look at the solution to the problem:

$\left.\begin{array}{l}f^{\prime}(x)=3 x^{2}-4 x+8 \\ f(1)=9\end{array}\right\}$
Solution: First integrate both sides:
$f(x)=\frac{3 x^{3}}{3}-\frac{4 x^{2}}{2}+8 x+C$
Simplify: $f(x)=x^{3}-2 x^{2}+8 x+C$

Now find C by using the initial condition.
Substitute 1 for x and 9 for $f(x)$
$9=(1)^{3}-2(1)^{2}+8(1)+C$
$\begin{array}{ll}9=1-2+8+C & \text { This gives } \\ 9=7+C & \text { solution. }\end{array}$
$9=7+C$
Calculus - 2 ? $=C \quad 16 \quad f(x)=x^{3}-2 x^{2}+8 x+2$ $16 f(x)=x^{3}-2 x^{2}+8 x+2 \quad$ 4/12/13

Review - Basic Integration Rules

Rule 1: $\int k d x=k x+C$ (k, a constant)
Rule 2: The Power Rule $\int x^{n}=\frac{x^{n+1}}{n+1}+C$
Rule 3: The Indefinite Integral of a Constant Multiple of a Function
$\int c f(x) d x=c \int f(x) d x, c$ is a constant
Rule 4: The Sum Rule (or difference)

$$
\int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x
$$

$$
\int[f(x)-g(x)] d x=\int f(x) d x-\int g(x) d x
$$

Rule 5: $\int e^{x} d x=e^{x}+C$
Rule 6: $\int \frac{1}{x} d x=\ln |x|+C$
(c) Integrate $\int(2 x-4)\left(\frac{1}{x^{2}}+\frac{3}{x}\right) d x$

Multiply the two factors in the radicand together and combine the like terms.
$\int \frac{2}{x}+6-\frac{4}{x^{2}}-\frac{12}{x} d x=\int 6-\frac{10}{x}-\frac{4}{x^{2}} d x$
Next use Rule 4 to integrate each term separately.
$\int 6 d x-10 \int \frac{1}{x} d x-4 \int x^{-2} d x$
$6 x-10 \ln |x|-4 \frac{x^{-1}}{-1}+C$
$6 x-10 \ln |x|+\frac{4}{x}+C$

Calculus - Sontowski	14	$4 / 12 / 15$

Integration Formulas for Trigonometric Functions

$\int \sin x d x=-\cos x+C$
$\int \cos x d x=\sin x+C$
$\int \sec ^{2} x d x=\tan x+C$
$\int \csc ^{2} x d x=-\cot x+C$
$\int \sec x \tan x d x=\sec x+C$
$\int \csc x \cot x d x=-\csc x+C$

Solution to Example (a).
$\int\left(3 \csc x \cot x-7 \sec ^{2} x\right) d x$
$=3 \int \csc x \cot x d x-7 \int \sec ^{2} x d x$
$=3\left[-\csc x+C_{1}\right]-7\left[\tan x+C_{2}\right]$
$=$
$\underline{-3 \csc x-7 \tan x+C}$

$\int \frac{3 \tan \theta-4 \cos ^{2} \theta}{\cos \theta} d \theta$
$=3 \int \frac{1}{\cos \theta} \tan \theta d \theta-4 \int \cos \theta d \theta$
$=3 \int \sec \theta \tan \theta d \theta-4 \int \cos \theta d \theta$
$=$
$\underline{3 \sec \theta-4 \sin \theta+C}$

Applications of Indefinite Integrals

1. Graphing

Given the sketch of the graph of the function, together with some function values, we can sketch the graph of its antiderivative as long as the antiderivative is continuous.

Applications of Indefinite Integrals

1. Boundary/Initial Valued Problems

There are many applications of indefinite integrals in different fields such as physics, business, economics, biology, etc.

These applications usually desire to find particular antiderivatives that satisfies certain conditions called initial or boundary conditions, depending on whether they occur on one or more than one point.

Example 2.

(27)

Suppose we wish to find a particular antiderivative satisfying the equation

$$
\frac{d y}{d x}=6 x+1
$$

and the initial condition $y=7$ when $x=2$.

Example 3 .
The volume of water in a tank is V cubic
meters when the depth of water is h
meters. The rate of change of V with
respect to h is $\pi\left(4 h^{2}+12 h+9\right)$, find the
volume of water in the tank when the
depth is $3 m$.

The Differential Equations

Equation containing a function and its derivative or just its derivative is called differential equations.

Applications occur in many diverse fields such as physics, chemistry, biology, psychology, sociology, business, economics etc.

The order of a differential equation is the order of the derivative of highest order that appears in the equation.

The function f defined by $y=f(x)$ is a solution of a differential equation if y and its derivatives satisfy tho equation. 4/12/15

The Differential Equations

If each side of the differential equations involves only one variable or can be reduced in this form, then, we say that these are separable differential equations.

Complete solution (or general solution)

$$
y=F(x)+C
$$

Particular solution - an initial condition is given

Example 4.
Find the complete solution of the differential equation
$\frac{d^{2} y}{d x^{2}}=4 x+3$
(33)

Example 5.
- Find the particular solution of the differential equation
below for which $y=2$ and $y^{\prime}=-3$ when $x=1$.
$\frac{d^{2} y}{d x^{2}}=4 x+3$

Example 6.
A stone is thrown vertically upward from the
ground with an initial velocity of $20 \mathrm{ft} / \mathrm{sec}$.
(a) How long will the ball be going up?
(b) How high will the ball go?
(c) With what velocity will the ball strike the
ground?

ANS to Example 6.

A stone is thrown vertically upward from the ground with an initial velocity of $20 \mathrm{ft} / \mathrm{sec}$.
(a) How long will the ball be going up? Ans. 0.625 sec
(b) How high will the ball go? Ans. 6.25 ft
(c) With what velocity will the ball strike the ground? Ans. $20 \mathrm{ft} / \mathrm{sec}$

Other Properties of Indefinite Integrals

And two other interesting "properties" need to be highlighted:

- Interpret what the following 2 statement mean:
- Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-2 \mathrm{x}$
- What is the answer for $\int \mathrm{f}^{`}(\mathrm{x}) \mathrm{dx}$....?
- What is the answer for $\mathrm{d} / \mathrm{dx} \int \mathrm{f}(\mathrm{x}) \mathrm{dx} . . .$. ?

Examples with Motion

- An object moves along a co-ordinate line with a velocity $\mathrm{v}(\mathrm{t})=2-3 \mathrm{t}+\mathrm{t}^{2}$ meters $/ \mathrm{sec}$. Its initial position is 2 m to the right of the origin.
- (a) Determine the position of the object 4 seconds later
- (b) Determine the total distance traveled in the first 4 seconds

Examples - " B " Levels
- Sometimes, the product rule for differentiation can
be used to find an antiderivative that is not obvious
by inspection
- So, by differentiating $y=x \ln x$, find an antiderivative
for $y=\ln x$
- Repeat for $y=x \mathrm{e}^{x}$ and $y=x \sin x$

Integration by Chain Rule/Substitution

For integrable functions f and g

$$
\int f(g(x))\left[g^{\prime}(x) d x\right]=F(g(x))+C
$$

where is an F antiderivative of f and C is an arbitrary constant.

Example 3.

(46)
$\int x^{5}\left(x^{2}-1\right)^{12} 2 d x$ \qquad Let $u=x^{2}-1$
$=\int\left(x^{2}\right)^{2}\left(x^{2}-1\right)^{12} 2 x d x$
$=\int(u+1)^{2} u^{12} d u$
$=\int\left(u^{14}+2 u^{13}+u^{12}\right) d u$
$=\frac{1}{15} u^{15}+\frac{2}{14} u^{14}+\frac{1}{13} u^{13}+C$
$=\frac{1}{15}\left(x^{2}-1\right)^{15}+\frac{1}{7}\left(x^{2}-1\right)^{14}+\frac{1}{13}\left(x^{2}-1\right)^{13}+C$
Calcalus - Santows: $=4$

Example 5.

(48)
$\int(\tan 2 x+\cot 2 x)^{2} d x$
$=\int\left(\frac{\sin 2 x}{\cos 2 x}+\frac{\cos 2 x}{\sin 2 x}\right)^{2} d x$
$=\int\left(\frac{\sin ^{2} 2 x+\cos ^{2} 2 x}{\cos 2 x \sin 2 x}\right)^{2} d x$
$=\int \frac{1}{\cos ^{2} 2 x \sin ^{2} 2 x} d x$
$=\int \sec ^{2} 2 x \csc ^{2} 2 x d x$

Example 6	
$=$	$\int \sec ^{2} 2 x \csc ^{2} 2 x d x$
$=$	$\int \sec ^{2} 2 x\left(\cot ^{2} 2 x+1\right) d x$
$=$	$\int \sec ^{2} 2 x \cot ^{2} 2 x d x+\int \sec ^{2} 2 x d x$
$=$	$\int(\tan 2 x)^{-2} \sec ^{2} 2 x d x+\int \sec ^{2} 2 x d x$
$=$	$\frac{1}{2} \int(\tan 2 x)^{-2} 2 \sec ^{2} 2 x d x+\frac{1}{2} \int 2 \sec ^{2} 2 x d x$
$=$	$-\frac{1}{2}(\tan 2 x)^{-1}+\frac{1}{2} \tan 2 x+C$
$=$	$-\frac{1}{2} \cot 2 x+\frac{1}{2} \tan 2 x+C$

Exercises:	
1. $\int 7 x\left(2 x^{2}+1\right)^{6} d x$	4. $\int y \csc 3 y^{2} \cot 3 y^{2} d y$
2. $\int 5 x \sqrt[3]{\left(9-4 x^{2}\right)^{2}}$	5. $\int \frac{\cos 3 x}{\sqrt{1-2 \sin 3 x}} d x$
3. $\int \frac{2 r}{(1-r)^{7}} d r$	6. $\int \frac{x\left(3 x^{2}+1\right) d x}{\left(3 x^{4}+2 x^{2}+1\right)^{4}}$

