
(A) Derivatives of $\mathrm{f}(\mathrm{x})=\sec (\mathrm{x})$ - Graphically

- For $y=\sec (x)$ on $(-2 \pi, 2 \pi)$
- Fcn is con up on $(-2 \pi,-3 \pi / 2),(-\pi / 2$, $\pi / 2),(3 \pi / 2,2 \pi) \rightarrow \therefore f^{\prime}$ increases
here
- Fcn is con down elsewhere $\rightarrow \therefore \mathrm{f}$ decreases here
Fcn has max at $-\pi, \pi \rightarrow$ roots on f
- Fcn has min at $-2 \pi, 0,2 \pi \rightarrow$ roots on ${ }^{\prime}$
- Fcn increases on $(-2 \pi,-3 \pi / 2),(-3 \pi /$ $2,-\pi),(0, \pi$
positive
- Fond
- Fcn decreases elsewhere $\rightarrow \mathrm{f}^{\prime}$ is negative
- Fcn has asymptotes at $\pm 3 \pi / 2, \pm \pi / 2$
\rightarrow f has asymptotes

2/28/15
Calculus - Santowski

(B) Derivative of $\mathrm{f}(\mathrm{x})=\sec (\mathrm{x})-$ Algebraically

- We will use the fact that $\sec (x)=1 / \cos (x)$ to find the derivative of $\sec (x)$
$\frac{d}{d x}(\sec (x))=\frac{d}{d x}\left(\frac{1}{\cos (x)}\right)$
$\frac{d}{d x}(\sec (x))=\frac{\frac{d}{d x}(1) \times \cos (x)-\frac{d}{d x}(\cos (x)) \times 1}{\cos ^{2} x}$
$\frac{d}{d x}(\sec (x))=\frac{(0) \times \cos x+\sin x}{\cos ^{2} x}$
$\frac{d}{d x}(\sec (x))=\frac{\sin x}{\cos ^{2} x}=\frac{1 \times \sin x}{\cos x \times \cos x}$
$\frac{d}{d x}(\sec (x))=\frac{1}{\cos x} \times \frac{\sin x}{\cos x}$
$\frac{d}{d x}(\sec (x))=\sec x \times \tan x$

2/28/15
Calculus - Santowski
(C) Derivatives of $\mathrm{f}(\mathrm{x})=\csc (\mathrm{x})$ and $\mathrm{f}(\mathrm{x})=\cot (\mathrm{x})$

- We can run through a similar curve analysis and derivative calculations to find the derivatives of the cosecant and cotangent functions as well
- The derivatives turn out to be as follows:
- $\mathrm{d} / \mathrm{dx} \csc (\mathrm{x})=-\csc (\mathrm{x}) \cot (\mathrm{x})$
- $\mathrm{d} / \mathrm{dx} \cot (\mathrm{x})=-\csc ^{2}(\mathrm{x})$

2/28/15
Calculus - Santowski

(D) Summary of Trig Derivatives

$$
\begin{aligned}
& \text { - primary trig fcns: } \\
& \begin{array}{ll}
\frac{d}{d x} \sin (x)=\sec (x) & \frac{d}{d x} \sec (x)=\sec (x) \tan (x) \\
\frac{d}{d x} \cos (x)=-\sin (x) & \frac{d}{d x} \csc (x)=-\csc (x) \cot (x) \\
\frac{d}{d x} \tan (x)=\sec ^{2}(x) & \frac{d}{d x} \cot (x)=-\csc ^{2}(x)
\end{array}
\end{aligned}
$$

$2 / 28 / 15$	Calculus - Santowski	${ }^{6}$

(E) Examples

- (i) Differentiate $f(x)=\frac{1}{1+\tan (x)}$
- (ii) Differentiate $h(x)=2 \csc ^{2}\left(3 x^{2}\right)$
- (iii) find $d y / d x$ if $\tan (y)=x^{2}$
- (iv) find the slope of the tangent line to $y=\tan (\csc (x))$ when $\sin (x)=1 / \pi$ on the interval $(0, \pi / 2)$
- (v) Find the intervals of concavity of $y=\sec (x)+\tan (x)$

2/28/15
Calculus - Santowski
(A) Graphs of Inverse Trig Functions

- The graphs of the inverse trig functions are as follows:

(B) Inverse Trig as Functions -

Restrictions

- For $y=\sin (x) \rightarrow$ between a \max and $\min (-\pi / 2$ and $\pi / 2)$
- For $y=\cos (x) \rightarrow$ between a max and min (0 and π)
- For $y=\tan (x) \rightarrow$ use one cycle, say between $-\pi / 2$ and $\pi / 2$

 So we need to make domain restrictions in the original function such that when we "invert", our inverse does turn out to be a function
- What domain restrictions shall we make??

(B) Inverse Trig as Functions -

Restrictions

- From the graphs previously shown, the inverse trig "relations" are not functions since the domain elements do not "match" the range elements i.e. \rightarrow not one-to-one 28/15 Calculus-Santowski 9

2/28/15
Calculus - Santowsk

(D) Derivative of $f(x)=\cos ^{-1}(x)$ on $(0, \pi)$

- If $y=\cos (x)$, then to make the inverse, $x=\cos (y)$ and we can use implicit differentiation to find dy/dx

$$
\frac{d}{d x}(x)=\frac{d}{d x}(\cos (y))
$$

$1=\frac{d}{d y}(\cos (y)) \times \frac{d y}{d x}$
$1=-\sin (y) \times \frac{d y}{d x}$
$-\frac{1}{\sin (y)}=\frac{d y}{d x}$

2/28/15 Calculus - Santowsk
Calculus-Santowski

But can we make a substitution for $\sin (y)$??
$\sin ^{2} y+\cos ^{2} y=1$
$\sin y=\sqrt{1-\cos ^{2} y} \Leftrightarrow x=\cos y$
$\sin y=\sqrt{1-x^{2}}$
\Uparrow
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sin y}$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}}$

$$
\begin{aligned}
& \text { (E) Derivative of } \mathrm{f}(\mathrm{x})=\tan ^{-1}(\mathrm{x}) \text { on }(-1 / 2 \pi, 1 / 2 \pi) \\
& \begin{array}{ll}
\begin{array}{l}
\text { If } \mathrm{y}=\tan (\mathrm{x}) \text {, then to make the } \\
\text { inverse, } \mathrm{x}=\tan (\mathrm{y}) \text { and we can use } \\
\text { implicit differentiation to find dy/dx }
\end{array} & =\begin{array}{l}
\text { But can we make a substitution for } \\
\sec ^{2}(\mathrm{y}) ? ?
\end{array} \\
\frac{d}{d x}(x)=\frac{d}{d x}(\tan (y)) & \begin{array}{l}
\sec ^{2} y=1+\tan ^{2} y \\
\sec ^{2} y=1+(\tan y)^{2} \Leftrightarrow x=\tan y \\
\sec ^{2} y=1+x^{2}
\end{array} \\
\begin{array}{ll}
1=\frac{d}{d y}(\tan (y)) \times \frac{d y}{d x} & \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{\sec ^{2} y} \\
1=\sec ^{2}(y) \times \frac{d y}{d x} & \frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}} \\
\frac{1}{\sec ^{2}(y)}=\frac{d y}{d x} & \\
\hline 2 / 28 / 15
\end{array}
\end{array} \begin{array}{l}
\text { Calculus - Santowski }
\end{array} \\
& \hline
\end{aligned}
$$

(F) Summary of Trig Inverse Derivatives

- The three derivatives of the inverse of the trig. primary functions are:

$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$	
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=-\frac{1}{\sqrt{1-x^{2}}}$	
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$	
Cataus. Smomest	${ }^{14}$

(H) Examples

(F) Homework

- Stewart, 1989, Chap 7.3, p319, Q1-4,6,7
- Stewart, 1989, Chap 7.6, p339, Q1-4
- Differentiate $\mathrm{y}=\sin ^{-1}\left(1-\mathrm{x}^{2}\right)$
- Differentiate $f(x)=x \tan ^{-1} \sqrt{x}$
- Differentiate $y=\cos ^{-1}(\sin (x))$
- If $y=\tan ^{-1}(x / y)$, find $d y / d x$

2/28/15
Calculus- Snntowski ${ }^{15}$

2/28/15
Calculus- Santowski ${ }^{16}$

