
Fast Five
I. State the value of $\sin (\pi / 4), \tan (\pi / 6), \cos (\pi / 3)$,
$\sin (\pi / 2), \cos (3 \pi / 2)$
2. Solve the equation $\sin (2 x)-I=0$
3. Expand $\sin (x+h)$
4. State the value of $\sin ^{-1}(0.5), \cos ^{-1}(\sqrt{3} / 2)$
Calculus - Santowsii 228815

Lesson Objectives

- (I) Work with basic strategies for developing new knowledge in Mathematics \rightarrow (a) graphical, (b) technology, (c) algebraic
- (2) Introduce \& work with fundamental trig limits
- (3) Determine the derivative of trigonometric functions
- (4) Apply \& work with the derivatives of the trig functions

3 Calculus - Santowski 2/28/15
(A) Derivative of the Sine Function - Graphically

```
We will predict the derivative of }f(x)=\operatorname{sin}(x)\mathrm{ from a
```

, We will simply sketch 2 cycles

- (i) we see a maximum at $\pi / 2$ and $-3 \pi / 2 \rightarrow$
(ii) we must have? ? $3 \pi / 2 \rightarrow$
derivative must have? ?

- (iv) the opposite is true of intervals of decrease
(v) intervals of concave up are $(-\pi, 0)$ and $(\pi, 2 \pi) \rightarrow$
so derivative must
p (vi) the opposite is true for intervals of concave up
-So the derivative function must look like $\boldsymbol{\rightarrow}$??
- 4

Calculus - Santowski 2/28/15

(A) Derivative of the Sine Function - Graphically

We will predict the derivative of $f(x)=\sin (x)$ from a

We will simply sketch 2 cycles
(i) we see a maximum at $\pi / 2$ and $-3 \pi / 2 \rightarrow$
(ii) we see minin
(ii) we see a minimum at $-\pi / 2$ and $3 \pi / 2 \rightarrow$
derivative must have ZEROES here
(iii) we see intervals of increase on $(-2 x$
$\pi / 2),(3 \pi / 2,2 \pi) \rightarrow$ derivative must be positive here
(iv) the opposite is true of intervals of decrease
(v) intervals of concave up are $(-\pi, 0)$ and $(\pi, 2 \pi) \rightarrow$ (v) intervals of concave up are $(-\pi, 0)$ and

- (vi) the opposite is true for intervals of concave up

So the derivative function must look like $\boldsymbol{\rightarrow}$ cosine graph

(A) Derivative of the Sine Function - Graphically

We will predict the derivative of $f(x)=\sin (x)$

We will simply sketch 2 cycles
(i) we see a maximum at $\pi / 2$ and $-3 \pi / 2 \rightarrow$
ive must have x -intercept

- (ii) we see intervals of increase on $(-2 \pi,-3 \pi / 2)$, positive on these intervals
- (iii) the opposite is true of intervals of decrease
(iv) intervals of concave up are $(-\pi, 0)$ and (π (iv) intervals of concave up are $(-\pi, 0)$ and (π
2π so derivative must increase on these domains
(v) the opposite is true for intervals of concave up

So the derivative function must look like $\boldsymbol{\rightarrow}$ the cosine function!!
> 6
Calculus - Santowski 2/28/15

(A) Derivative of the Sine Function - Technology

- We will predict the what the derivative function of $f(x)=$ $\sin (x)$ looks like from our graphing calculator:

(A) Derivative of the Sine Function - Technology
- We will predict the what the derivative function of $f(x)=$ $\sin (x)$ looks like from DESMOs:

- 9

Calculus - Santowski 2/28/15
(B) Derivative of Sine Function - Algebraically

- We will go back to our limit concepts for an algebraic determination of the derivative of $y=\sin (x)$
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin (x)}{h}$
$\frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0} \frac{\sin (x) \cos (h)+\sin (h) \cos (x)-\sin (x)}{h}$
$\frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0} \frac{\sin (x)[\cos (h)-1)]+\sin (h) \cos (x)}{h}$
$\frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0} \frac{\sin (x)[\cos (h)-1]}{h}+\lim _{h \rightarrow 0} \frac{\sin (h) \cos (x)}{h}$
$\frac{d}{d x} \sin (x)=\lim _{h \rightarrow 0}(\sin (x)) \times \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}+\lim _{h \rightarrow 0} \frac{\sin (h)}{h} \times \lim _{h \rightarrow 0} \cos (x)$
$\frac{d}{d x} \sin (x)=\sin (x) \times \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}+\cos (x) \times \lim _{h \rightarrow 0} \frac{\sin (h)}{h}$
- 10

Calculus - Santowski 2/28/15
(B) Derivative of Sine Function - Algebraically

- So we come across 2 special trigonometric limits:
- $\lim _{h \rightarrow 0} \frac{\sin (h)}{h}$ and $\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}$
- So what do these limits equal?
- Since we are looking at these ideas from an ALGEBRAIC PERSPECTIVE \rightarrow We will introduce a new theorem called a Squeeze (or sandwich) theorem \rightarrow if we that our limit in question lies between two known values, then we can somehow "squeeze" the value of the limit by adjusting/ manipulating our two known values
- 11

Calculus - Santowski 2/28/15

(C) Applying "Squeeze Theorem" to Trig. Limits

- Working with our area relationships (make $\mathrm{h}=\boldsymbol{\theta}$)
$1 / 2(O B)^{2}(\theta) \leq 1 / 2(O B)(O A) \leq 1 / 2(O C)^{2}(\theta)$
$1 / 2 \theta \times \cos ^{2}(\theta) \leq 1 / 2 \sin (\theta) \cos (\theta) \leq 1 / 2 \theta \times(1)^{2}$
$\theta \cos ^{2}(\theta) \leq \sin (\theta) \cos (\theta) \leq \theta$
$\frac{\theta \cos ^{2}(\theta)}{\theta \cos (\theta)} \leq \frac{\sin (\theta) \cos (\theta)}{\theta \cos (\theta)} \leq \frac{\theta}{\theta \cos (\theta)}$
$\cos (\theta) \leq \frac{\sin (\theta)}{\theta} \leq \frac{1}{\cos (\theta)}$
* We can "squeeze or sandwich" our ratio of $\sin (\mathrm{h}) / \mathrm{h}$ between $\cos (\mathrm{h})$ and $\mathrm{I} / \cos (\mathrm{h})$
> 14
Calculus - Santowski 2/28/15
(C) Applying "Squeeze Theorem" to Trig. Limits
- Now, let's apply the squeeze theorem as we take our limits as $h \rightarrow 0^{+}$(and since $\sin (\mathrm{h})$ has even symmetry, the LHL as $h \rightarrow 0^{-}$)

$$
\lim _{h \rightarrow 0} \cos (h) \leq \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \leq \lim _{h \rightarrow 0} \frac{1}{\cos (h)}
$$

$$
1 \leq \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \leq 1
$$

$$
\therefore \lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1
$$

- Follow the link to Visual Calculus - Trig Limits of $\sin (\mathrm{h}) / \mathrm{h}$ to see their development of this fundamental trig limit
(C) Applying "Squeeze Theorem" to Trig. Limits
- Now what about $(\cos (\mathrm{h})-\mathrm{l}) / \mathrm{h}$ and its limit \rightarrow we will treat this algebraically
$=\lim _{h \rightarrow 0} \frac{(\cos (h)-1)(\cos (h)+1)}{h(\cos (h)+1)}$
$=\lim _{h \rightarrow 0} \frac{\cos ^{2}(h)-1}{h(\cos (h)+1)}$
$=\lim _{h \rightarrow 0} \frac{-\sin ^{2}(h)}{h(\cos (h)+1)}$
$=-1 \times \lim _{h \rightarrow 0} \frac{\sin (h)}{h} \times \lim _{h \rightarrow 0} \frac{\sin (h)}{(\cos (h)+1)}$
$=-1 \times 1 \times\left(\frac{0}{1+1}\right)$
$=0$
-16
Calculus - Santowski $2 / 28 / 15$
$\xrightarrow[\text { (D) Fundamental Trig. Limits } \boldsymbol{\rightarrow}]{\text { Graphic and Numeric Verification }}$

(D) Derivative of Sine Function

- Since we have our two fundamental trig limits, we can now go back and algebraically verify our graphic "estimate" of the derivative of the sine function
$\lim _{h \rightarrow 0} \frac{\sin (h)}{h}=1$
$\lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}=0$
$\frac{d}{d x}(\sin (x))=\sin (x) \times \lim _{h \rightarrow 0} \frac{\cos (h)-1}{h}+\cos (x) \times \lim _{h \rightarrow 0} \frac{\sin (h)}{h}$
$\frac{d}{d x}(\sin (x))=\sin (x) \times 0+\cos (x) \times 1$
$\frac{d}{d x}(\sin (x))=\cos (x)$
- 18

Calculus - Santowski 2/28/15

(E) Derivative of the Cosine Function

- Knowing the derivative of the sine function, we can develop the formula for the cosine function
- First, consider the graphic approach as we did previously
(E) Derivative of the Cosine Function

We will predict the what the derivative
function of $f(x)=\cos (x)$ looks like from our curve sketching ideas:
We will simply sketch 2 cycles
(i) we see a maximum at $0,-2 \pi \& 2 \pi \rightarrow$
derivative must have x-intercepts
$\binom{(i i)}{2 \pi} \rightarrow$ dee se intervativals of increase on $(-\pi, 0)$, (π, (iii) the (iii) the opposite is true of intervals of (iv) intervals of concave up are $(-3 \pi / 2$, -r/2)
and $(\pi / 2,3 \pi / 2) \rightarrow$ so derivative must and $(\pi / 2,3 \pi / 2) \rightarrow$
(v) the opposite is true for intervals of concave up

So the derivative function must look like \rightarrow
some variation of the sine function!!

20 Calculus - Santowski 2/28/15

\rightarrow

Calculus - Santowski 2/28/15
(E) Derivative of the Cosine Function

We will predict the what the derivative
function of $f(x)=\cos (x)$ looks like from o
curve sketching ideas:
We will simply sketch 2 cycles
(i) we see a maximum at $0,-2 \pi \& 2 \pi \rightarrow$
derivative must have x-intercepts
(ii) we see intervals of increase on $(-\pi, 0)$), (π,
$2 \pi) \rightarrow$ derivative must increase on this
intervals
(iii) the opposite is true of intervals of
(ecrease

- $\begin{aligned} & \text { (iv) intervals of concave up are }(-3 \pi / 2,-\pi / 2) \\ & \text { and }(\pi / 2,3 \pi / 2) \\ & \rightarrow \text { so derivative must increase }\end{aligned}$
(v) the opposite is true for intervals of
concave up
So the derivative function must look like \rightarrow So the derivative function m
the negative sine function!
- 21

Calculus - Santowski 2/28/15
(E) Derivative of the Cosine Function

- Knowing the derivative of the sine function, we can develop the formula for the cosine function
- First, consider the algebraic approach as we did previously
- Recalling our IDENTITIES $\rightarrow \cos (x)$ can be rewritten in TERMS OF $\operatorname{SIN}(X)$ as:
- (a) $y=\sin (p i / 2-x)$
- (b) $y=\operatorname{sqrt}\left(1-\sin ^{2}(x)\right)$

22
Calculus - Santowski 2/28/15
(E) Derivative of the Cosine Function
Let's set it up algebraically:
$\frac{d}{d x}(\cos (x))=\frac{d}{d x}\left(\sin \left(\frac{\pi}{2}-x\right)\right)$
$\frac{d}{d x}(\cos (x))=\frac{d}{d\left(\frac{\pi}{2}-x\right)}\left(\sin \left(\frac{\pi}{2}-x\right)\right) \times \frac{d}{d x}\left(\frac{\pi}{2}-x\right)$
$\frac{d}{d x}(\cos (x))=\cos \left(\frac{\pi}{2}-x\right) \times(-1)$
$\frac{d}{d x}(\cos (x))=\sin (x) \times-1=-\sin (x)$
(E) Derivative of the Cosine Function

Let's set it up algebraically:

$$
\begin{aligned}
& \frac{d}{d x}(\cos (x))=\frac{d}{d x}\left(\sqrt{1-\sin ^{2}(x)}\right) \\
& \frac{d}{d x}(\cos (x))=\frac{1}{2}\left(1-\sin ^{2}(x)\right)^{-\frac{1}{2}} \cdot-2 \sin (x) \cos (x) \\
& \frac{d}{d x}(\cos (x))=\frac{1}{2 \sqrt{1-\sin ^{2}(x)}} \cdot-2 \sin (x) \cos (x) \\
& \frac{d}{d x}(\cos (x))=\frac{-2 \sin (x) \cos (x)}{2 \sqrt{1-\sin ^{2}(x)}} \\
& \frac{d}{d x}(\cos (x))=\frac{-2 \sin (x) \cos (x)}{2 \sqrt{\cos ^{2}(x)}} \\
& \frac{d}{d x}(\cos (x))=\frac{-2 \sin (x) \cos (x)}{2 \cos (x)} \\
& \frac{d}{d x}(\cos (x))=-\sin (x) \\
& \text { Calculus - santowski 2/28/15 }
\end{aligned}
$$

(F) Derivative of the Tangent

 Function - Graphically- So we will go through our curve analysis again
- $f(x)$ is constantly increasing within its domain
- $f(x)$ has no max/min points
- $f(x)$ changes concavity from con down to con up at $0, \pm \pi$
- $f(x)$ has asymptotes at $\pm 3 \pi$

- $/ 2, \pm \pi / 2$
> 25
Calculus - Santowski 2/28/15

(F) Derivative of the Tangent

 Function - Graphically- So we will go through our curve analysis again:
- $F(x)$ is constantly increasing within its domain $\rightarrow \mathrm{f}^{\prime}(\mathrm{x})$ domain
- $\mathrm{F}(\mathrm{x})$ has no $\mathrm{max} / \mathrm{min}$ points \rightarrow (x) should not have roots
- $\mathrm{F}(\mathrm{x})$ changes concavity from con down to con up at $0, \pm \pi \rightarrow f^{\prime}(x)$ increase and will have a min
- $\mathrm{F}(\mathrm{x})$ has asymptotes at $\pm 3 \pi \rightarrow$
- $/ 2, \pm \pi / 2 \rightarrow$ derivative should have asymptotes at the same points
$26 \quad$ Calculus - Santowski 2/28/15

(F) Derivative of the Tangent

Function - Algebraically

- We will use the fact that $\tan (\mathrm{x})=\sin (\mathrm{x}) / \cos (\mathrm{x})$ to find the derivative of $\tan (\mathrm{x})$
$\frac{d}{d x}(\tan (x))=\frac{d}{d x}\left(\frac{\sin (x)}{\cos (x)}\right)$
$\frac{d}{d x}(\tan (x))=\frac{\frac{d}{d x}(\sin (x)) \times \cos (x)-\frac{d}{d x}(\cos (x)) \times \sin (x)}{(\cos (x))^{2}}$
$\frac{d}{d x}(\tan (x))=\frac{\cos (x) \times \cos (x)-(-\sin (x)) \times \sin (x)}{\cos ^{2} x}$
$\frac{d}{d x}(\tan (x))=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}$
$\frac{d}{d x}(\tan (x))=\frac{1}{\cos ^{2} x}=\sec ^{2} x$
- 27

Differentiate the following Differentiate the following: $y=\cos \left(x^{2}\right)$ $y(t)=\sqrt{1+\cos t+\sin ^{2} t}$ $y=\cos ^{2}(x)$ $y=3 \sin (2 x)$ $y=6 x \sin \left(3 x^{2}\right)$ $f(x)=\frac{x^{2}}{2-\cos (\pi x)}$ $f(y)=y^{2} \cos \left(3 y^{3}\right)$	

Differentiate the llowing:

Applications - Tangent Lines

- Find the equation of the tangent line to $f(x)=$ $x \sin (2 x)$ at the point $x=\pi / 4$
- What angle does the tangent line to the curve $y=f(x)$ at the origin make with the x-axis if y is given by the equation
$y=\frac{1}{\sqrt{3}} \sin 3 x$

Applications - Curve Analysis

- Find the maximum and minimum point(s) of the function $f(x)=2 \cos x+x$ on the interval $(-\pi, \Pi)$
- Find the minimum and maximum point(s) of the function $f(x)=x \sin x+\cos x$ on the interval $(-\pi / 4, \pi)$
- Find the interval in which $g(x)=\sin (x)+\cos (x)$ is increasing on $x E R$

Applications
Given $g(x)= \begin{cases}\sin x & 0 \leq x \leq \frac{2 \pi}{3} \\ a x+b & \frac{2 \pi}{3}<x \leq 2 \pi\end{cases}$
(a) for what values of a and b is $g(x)$ differentiable at $2 \pi / 3$ (b) using the values you found for $a \& b$, sketch the graph of $g(x)$
> 31 Calculus - Santowski 2/28/15

(G) Internet Links

- Calculus I (Math 2413) - Derivatives - Derivatives of Trig Functions from Paul Dawkins
- Visual Calculus - Derivative of Trigonometric Functions from UTK
- Differentiation of Trigonometry Functions - Online Questions and Solutions from UC Davis
- The Derivative of the Sine from IEC - Applet

(H) Homework

- Stewart, I989, Chap 7.2, QI-5, II
- Handout from Stewart, Calculus:A First Course, 1989, Chap 7.2, QI\&3 as needed, 4-7,9

