Lesson 38 - Implicit Differentiation

Calculus - Santowski

Fast Five

1. 2. Isolate y from $x^{2}+y^{2}=25$
-2. Isolate y from $3 x-2 y+10=0$
, 3. Isolate y from $y^{2}-4 x+7=0$
-4. Isolate y from $3 x^{2}-2 y^{3}=1$
, 5. Isolate y from $2 x^{5}+x^{4} y+y^{5}=36$
-6. Differentiate $36=2 x^{5}+x^{4} y+y^{5}$ on Wolframalpha

Calculus - Santowski 2/15/15

(A) Review

- We need to agree on one convention \rightarrow when we see a y term in an implicitly (or explicitly defined equation), we will understand that we are really saying $\mathrm{y}(\mathrm{x}) \rightarrow$ i.e. that $y(x)$ is a differentiable function in x
- Therefore, if we see y^{5}, then we will interpret this expression as $(\mathrm{y}(\mathrm{x}))^{5} \boldsymbol{\rightarrow}$ it is therefore differentiable in x.

Lesson Objectives

1. Define the terms explicit and implicit equations

- 2. Implicitly differentiate implicitly defined equations
-3. Determine the equation of tangents and normals of implicitly defined equations
- 4. Apply implicit differentiation to real world problems

Calculus - Santowski 2/15/15

(A) Review

- Up to this point, we have always defined functions by expressing one variable explicitly in terms of another i.e. $y=f(x)=x^{2}-1 / x+x$
- In other courses, we have also seen functions expressed implicitly i.e. in terms of both variables i.e. $x^{2}+y^{2}=25$
- In simple implicit functions, we can always isolate the y term to rewrite the equation in explicit terms i.e. $y= \pm \sqrt{ }\left(25-x^{2}\right)$
- In other cases, rewriting an implicit relation is not so easy i.e. $2 x^{5}+x^{4} y+y^{5}=36$
(B) Derivatives
- Differentiate the following (d/dx):
(i) $\left(5 x^{3}-7 x+1\right)^{5}$
(ii) $[f(x)]^{5}$
(iii) $[y(x)]^{5}$
(iv) y^{5}

(B) Derivatives

- We apply the chain rule in that we can recognize $[y(x)]^{5}$ as a composed function with the "inner" function being $y(x)$ and the "outer" function is x^{5}
- So then according to the chain rule,

$$
\begin{aligned}
& =\frac{d}{d(y(x))}(y(x))^{5} \times \frac{d}{d x} y(x) \\
& =5(y(x))^{4} \times \frac{d(y(x))}{d x} \\
& =5 y^{4} \times \frac{d y}{d x}
\end{aligned}
$$

(C) Implicit Differentiation

- Example: Find $d y / d x$ for $2 x^{5}+x^{4} y+y^{5}=36$
- There are two strategies that must be used
- First, the basic rule of equations is that we can do anything to an equation, provided that we do the same thing to both sides of the equation.
- So it will relate to taking derivatives \rightarrow we will start by taking the derivative of both sides.
- Secondly, then, work with the various implicitly defined fcns....

(D) In Class Examples

, ex 2. Find $d y / d x$ if $x+\sqrt{ } y=x^{2} y^{3}+5$

- ex 3. Find the slope of the tangent line drawn to $x^{2}+2 x y+3 y^{2}=27$ at $x=0$.
- ex 4. Determine the equation of the tangent line to the ellipse $4 x^{2}+y^{2}-8 x+6 y=12$ at $x=3$.
, ex 5. Find $d^{2} y / d x^{2}$ of $x^{3}+y^{3}=6 x y$

(D) In Class Example

- Differentiate the following:

$$
\begin{aligned}
& e^{2 x+3 y}=x^{2}-\ln \left(x y^{3}\right) \\
& e^{x y}=2 x+y
\end{aligned}
$$

"Level 7" Level Questions

p 1. Find the equation of the lines that are tangent to the ellipse $x^{2}+4 y^{2}=16$ AND also pass through the point $(4,6)$

- 2. Prove that the curves defined by $x^{2}-y^{2}=\boldsymbol{k}$ and $x y=p$ intersect orthogonally for all values of of the constants k and p. Illustrate with a sketch

"Level 7" Level Questions

- Find the equation of the tangent line at the point (a, b) on the curve $x^{2 / 3}+y^{2 / 3}=1$. Hence, show that the distance between the x and y-intercepts of the tangent line is independent of the point of tangency

Resources

- You can watch the following ppt/pdfs:
- http://mrsantowski.tripod.com/2014MathHL/Resources/ Implicit_Diff_Part_1.pdf
- http://mrsantowski.tripod.com/2014MathHL/Resources/ Implicit_Diff_Part_2.pdf
- https://www.youtube.com/watch?v=anq_8ARu08g
- https://www.youtube.com/watch?v=rtZqpBSowjU
https://www.youtube.com/watch?v=1 scXr6g7HdA Calcalus - Santowskik 2/16/15

