Warm-up

1. Find the derivative of the following function:

$$
f(x)=3 x^{3}-\frac{4}{x^{2}}+\frac{5}{x^{5}}
$$

2. Use your answer to Question \#1 to find $\mathrm{f}^{\prime}(-1)$.
3. Use your answer to Question \#2 to find the equation of the line tangent to $f(x)$ at $x=-1$.
4. Write down the derivative of the following functions:
a. $g(x)=e^{x}$
b. $h(x)=\ln (x)$

A bit more on e^{x} and $\ln (x)$...
Find the derivative of each function.
a $f(x)=3 \mathrm{e}^{x}$
b $f(x)=x^{2}+\ln x$
c $f(x)=\ln e^{3 x}$

Write an equation for each line in questions 7-10.
7 The line tangent to the curve $f(x)=4 \mathrm{e}^{x}-7$ at $x=\ln 3$
8 The normal line to the curve $f(x)=\ln \left(\mathrm{e}^{x^{2}}\right)$ at the point $(-3,9)$
9 The line tangent to the curve $f(x)=\ln x$ at $x=\mathrm{e}$
10 The line normal to the curve $f(x)=2 x^{2}+\mathrm{e}^{\ln x}-3$ at $x=2$

Show that the equation of the tangent to $y=\ln x$ at the point where $y=-1$ is $y=e x-2$.

What happens to derivatives when we take the product of two functions? Let $f(x)=x^{5}$ and $g(x)=x^{7}$.

1. Find $f^{\prime}(x)$ and $g^{\prime}(x)$
2. Find and simplify $f(x)$ * $g(x)$
3. Find $f^{\prime}(x)^{*} g^{\prime}(x)$
4. Find the derivative of the function from \#3.
5. How does your answer in \#2 compare to \#4?

What can you conclude about the derivatives of products?

What happens to derivatives when we take the quotient of two functions? Let $f(x)=x^{5}$ and $g(x)=x^{7}$.

1. Find $f^{\prime}(x)$ and $g^{\prime}(x)$
2. Find and simplify $f(x) / g(x)$
3. Find $f^{\prime}(x) / g^{\prime}(x)$
4. Find the derivative of the function from \#3.
5. How does your answer in \#2 compare to \#4?

What can you conclude about the derivatives of quotients?

Try to GENERALIZE a product and/or quotient rule using function notation $f(x), g(x), f^{\prime}(x), g^{\prime}(x)$

THE Product Rule

$$
h(x)=f(x)^{\star} g(x)
$$

$h^{\prime}(x)=$
"One dee Two plus Two dee One" -OR-

To the tune of Happy Birthday: One prime two plus two prime one,

One prime two plus two prime one,
This makes up the product rule,
Golly, CALC-U-LUS is fun!

THE Quotient Rule

$$
h(x)=f(x) / g(x)
$$

$h^{\prime}(x)=$
"Low dee High less High dee Low, over Low Low"
-OR-
To the tune of Happy Birthday:
The quotient rule I need to know,
Low d high less high d low,
Draw a line then there below,
Put the squa-are of the low!

Examples to try!

1. $f(x)=3 x^{2}+4 x+5$ and $g(x)=2 x+1 ; h(x)=f(x)^{*} g(x)$

Find $h^{\prime}(x)$
2. Find $f^{\prime}(x)$ if $f(x)=x^{4} \ln (x)$
3. Find $\frac{d y}{d x}$ if $y=\left(x^{4}+x^{3}+2\right)\left(x^{2}+3 x\right) * D O N$ 'T expand!

Examples to try!

1. $y=\frac{x^{4}+2 x^{3}+2}{x^{2}+5 x}$ Find $\frac{d y}{d x}$
2. Find $\frac{d}{d x}[f(x)]$ if $f(x)=\frac{\ln x}{x^{2}+5 x+2}$

Mixed Practice!

$$
\begin{array}{ll}
\text { a } y=\frac{1+3 x}{x^{2}+1} & \text { a } x e^{x}
\end{array} \text { b } y=\frac{\sqrt{x}}{(1-2 x)^{2}}
$$

b $f(x)=2 x(x+1) \quad$ c $y=x^{3} \ln x$
c $y=x^{2}(2 x-1)$
d $f(x)=\frac{x+2}{2 e^{x}-3}$
g $y=e^{x} \ln x$
h. $f(x)=(3 x+1)(\ln x)$

1. Suppose $y=-2 x^{2}(x+4)$. For what values of x does $\frac{d y}{d x}=10$?
2. If $y=\frac{2 \sqrt{x}}{1-x}$, show that $\frac{d y}{d x}=\frac{x+1}{\sqrt{x}(1-x)^{2}}$.
3. Find the gradient of the tangent to $y=x \ln x$ at the point where $x=e$.

$$
\frac{d y}{d x}=\frac{x+1}{\sqrt{x}(1-x)^{2}} \text {. For what values of } x \text { is } \frac{d y}{d x} \quad \text { i } \quad \text { zero } \quad \text { ii } \text { undefined? }
$$

Find the derivative of each function in questions 1 to 8 .
$1 f(x)=\frac{x^{2}}{x-4}$
$2 f(x)=\left(2 x^{3}+x^{2}+x\right)\left(x^{2}+1\right)$
$3 f(x)=\frac{\ln x}{x}$
$4 f(x)=\mathrm{e}^{x} \ln x$
$5 f(x)=\frac{x-2}{x+4}$
$6 f(x)=\frac{\mathrm{e}^{x}}{\mathrm{e}^{x}+1}$
$7 f(x)=\mathrm{e}^{x}\left(5 x^{3}+4 x\right)$
$8 f(x)=\frac{2-x^{2}}{x^{3}+1}$

EXAM-STULE QUESTIONS

9 The function $f(x)=x \mathrm{e}^{x}$ has a horizontal tangent line at $x=k$ Find k.

10 Write the equations for the tangent lines to the graph of $f(x)=\frac{x+1}{x-1}$ that are parallel to the line $x+2 y=10$

Extra Practice

Product Rule Practice WS
Quotient Rule Practice WS
AP Quotient and Product Rule WS
Calculus by Foerster
4-2, pg 135 \#1-19 (odds only), 27
4-3, pg 139: \#1-15 (odds only)

