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Lesson 32 – Continuity of 
Functions 

Calculus - Santowski 
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Lesson Objectives 

  1. Introduce piecewise functions algebraically, 
numerically and graphically 

  2. Define continuity and know the 3 conditions of 
continuity 

  3. Understand the conditions under which a function 
is NOT continuous on both open and closed intervals 

  4. Use algebraic, graphic, & numeric methods to 
determine continuity or points of discontinuity in a 
function 

  5. Apply continuity to application/real world problems 
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(A) Piecewise Functions 

  We will work through an internet “investigation” that will 
explain to you how to put together the graph of a 
piecewise function 

  The function we will graph and analyze is 
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€ 

f (x) =
x 2 −1 if x < 2
2 − x if x > 2

⎧ 
⎨ 
⎩ 

(A) Piecewise Functions 
  Sketch/graph the following: 
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€ 

f (x) =
x + 3 x <1
1− x 2 x ≥1
⎧ 
⎨ 
⎩ 

€ 

f (x) =
1
x 2

x ≠ 0
1 x = 0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

f (x) =
x 2 − x − 2
x − 2

x ≠ 2
1 x = 2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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(B) Continuity 

  We can understand continuity in several ways: 

  (1) a continuous process is one that takes place 
gradually, smoothly, without interruptions or abrupt 
changes 

  (2) a function is continuous if you can take your 
pencil and can trace over the graph with one 
uninterrupted motion 

  (3) We will develop a more mathematically based 
definition later 
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(C) Types of Discontinuities 
  (I) Jump Discontinuities:  

  ex                             

  Determine the function 
values (from the left and 
from the right) at x = 1.  

  We notice our function 
values "jump" from 4 to 
0 

€ 

f (x) =
x + 3 x <1
1− x 2 x ≥1
⎧ 
⎨ 
⎩ 
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(C) Types of Discontinuities 
  (II) Infinite Discontinuities 

  ex.  

  determine the function 
values (L & R) at x = 0.  

  The left hand value and 
right hand value do not 
exist (both are +∞) 
although the function 
value is 1 

€ 

f (x) =
1
x 2

x ≠ 0
1 x = 0

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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(C) Types of Discontinuities 
  (III) Removable 

Discontinuities 

  Ex 

  Determine the function 
values (L & R) at x = 2.  

  The left value and right 
value are equal to 3 
although the function 
value is 1 

€ 

f (x) =
x 2 − x − 2
x − 2

x ≠ 2
1 x = 2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
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(D) Continuity - Examples 

  Find all numbers, x = a, for which each function is 
discontinuous. For each discontinuity, state which of the 
three conditions are not satisfied. 

  (i)     (ii)  

  (iii) 

  (iv)  

€ 

f (x) =
x

x +1( )2

€ 

f (x) =
x 2 − 9
x − 3

€ 

f (x) =
x 2 + 3x −10

x − 2
x ≠ 2

7 x = 2

⎧ 
⎨ 
⎪ 

⎩ ⎪ € 

f (x) =
2x 4 − 3x 3 − x 2 + x −1 x ≤ 2
x 2 + 2x − 3

x −1
x > 2

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

1/25/15 Calculus - Santowski 10 

(E) Conditions for Continuity 

  a function, f(x), is continuous at a given number, x = c, if: 

   (i)     f(c) exists;  

  (ii)                      exists 

  (iii)  

  In other words, if I can evaluate a function at a given value of x = c and if I 
can determine the value of the limit of the function at x = c and if we 
notice that the function value is the same as the limit value, then the 
function is continuous at that point.  

  A function is continuous over its domain if it is continuous at each 
point in its domain. 

€ 

lim
x→c

f (x)

€ 

lim
x→c

f (x) = f (c)
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(F) Importance of Continuities 

  Continuity is important for three reasons: 

  (1) Intermediate Value Theorem (IVT) 
  (2) Extreme Value Theorem (EVT) 
  (3) differentiability of a function at a point - for now, the 

basic idea of being able to draw a tangent line to a 
function at a given point for x 
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(G) Internet Links for Continuity 
  Calculus I (Math 2413) - Limits - Continuity from Paul Dawkins 

  A great discussion plus graphs from Stefan Waner at Hofstra U 
 Continuity and Differentiability  then do the 
Continuity and Differentiability Exercises on this site 

  Here are a couple of links to Visual Calculus from UTK 
  General discussion plus examples and explanations: 

Continuous Functions 
  Quiz to take on continuous functions: Continuity quiz 
  And a second, different type of quiz: 

Visual Calculus - Drill - Continuity of Piecewise Defined 
Functions 
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(I) “A” Level Work 

  Research the Intermediate Value Theorem 

  Tell me what it is, why it is important, what continuity has 
to do with it and be able to use it 

  MAX 2 page hand written report (plus graphs plus 
algebra) + 2 Q quiz 
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(I) “A” Level Work 

  A function is defined as follows: 

  (i) Evaluate fcn value(s) if a = 1  (limx→-2 ) 
  (ii) Evaluate fcn value(s) if b = 1  (limx→3) 
  (iii) find values for a and b such f(x) is continuous at 

BOTH x = -2 and x = 3 

€ 

f (x) =

ex + a x < −2
x + 2 −2 ≤ x ≤ 3
b + ex−3 x > 3

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 
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(I) “A” Level Work 
  Define a piecewise function as f(x) where  

  (a) Find a relationship between b and c such that f(x) 
is continuous at -3. Then give a specific numerical 
example of values for b and c 

  (b) Find value(s) for b such that f(x) is continuous at 1 
  (c) Find values for b and c such that f(x) is continuous 

on xεR 

€ 

f (x) =

x − c,
2 − bx,
x 3 + bx,

x < −3
−3 < x <1
x >1

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 


