	Lesson 31 (Day 2) - Limits
	Calculus - Mr Santowski
${ }_{12515}$	M. Smanousk. Cataus

Lesson Objectives

- 1. Define limits
- 2. Use algebraic, graphic and numeric (AGN) methods to determine if a limit exists
- 3. Use algebraic, graphic and numeric methods to determine the value of a limit, if it exists
- 4. Use algebraic, graphic and numeric methods to determine the value of a limit at infinity, if it exists
- 5. Be able to state and then work with the various laws of limits
- 6. Apply limits to application/real world problems Mr. Santowski - Calculus

Fast Five - Limits (Lesson \#2)

- Consider the following limit(s):

$$
\begin{aligned}
& \lim _{x \rightarrow \infty} f(x) \text { if } f(x)=\frac{1}{x^{n}} \\
& \lim _{x \rightarrow 0} f(x) \text { if } f(x)=\frac{1}{x^{n}}
\end{aligned}
$$

- Determine the limiting value(s) if possible.

(A) Introduction to Limits

- Let f be a function and let a and L be real numbers. If
- 1. As x takes on values closer and closer (but not equal) to a on both sides of a, the corresponding values of $f(x)$ get closer and closer (and perhaps equal) to L; and
- 2. The value of $f(x)$ can be made as close to L as desired by taking values of x close enough to a;
- Then L is the LIMIT of $f(x)$ as x approaches a
- Written as $\lim _{x \rightarrow a} f(x)=L$

1/25/15
Mr. Santowski - Calculus

(C) Existence of Limits

- Now here is a graph of a function which is
defined as
$f(x)=\left\{\begin{array}{cc}2-x & x<2 \\ (x-3)^{2}-2 & x \geq 2\end{array}\right.$
- Find $\lim _{x \rightarrow 2} f(x)$

1/25/15
Mr. Santowski - Calculus

(C) Existence of Limits

- In considering several of our previous examples, we see the idea of one and two sided limits.
- A one sided limit can be a left handed limit notated as $\lim _{x \rightarrow a^{-}} f(x) \quad$ which means we approach $x=a$ from the left (or negative) side
- We also have right handed limits which are notated as $\lim _{x \rightarrow a^{+}} f(x) \quad$ which means we approach $x=a$ from the right (or positive) side

1/25/15
Mr. Santowski - Calculus

(C) Existence of Limits

- We can make use of the left and right handed limits and now define conditions under which we say a function does not have a limiting y value at a given x value $==>$ by again considering our various examples above, we can see that some of our functions do not have a limiting y value because as we approach the x value from the right and from the left, we do not reach the same limiting y value.
- Therefore, if $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ then $\lim _{x \rightarrow a} f(x)$ does not

1/25/15
Mr. Santowski - Calculus

(C) Existence of Limits

- We can make use of the left and right handed limits and now define conditions under which we say a function does have a limiting y value at a given x value $==>$ by again considering our various examples above, we can see that some of our functions do have a limiting y value because as we approach the x value from the right and from the left, we reach the same limiting y value.
- Therefore, if $\lim _{x \rightarrow a^{-}} f(x)=\lim _{x \rightarrow a^{+}} f(x)$ then $\lim _{x \rightarrow a} f(x)$ does exist.

1/25/15

(D) Limits \& Infinities

- Find $\lim _{x \rightarrow 3} \frac{x^{2}+9}{x-3}$
- So we try to use some algebra "tricks" as before, but $x^{2}+9$ doesn't factor.
- So we use a ToV, and a graph
- What is the limit in this case?

Trit

1/25/15
Mr. Santowski - Calculus 11

(D) Limits \& Infinities

- In this case, both the graph and the table suggest two things:
- (1) as $x \rightarrow 3$ from the left, $g(x)$ becomes more and more negative
- (2) as $x \rightarrow 3$ from the right, $\mathrm{g}(\mathrm{x})$ becomes more and more positive

(D) Limits \& Infinities

- So we write these ideas as:
- $\lim _{x \rightarrow 3^{-}} \frac{x^{2}+9}{x-3}=-\infty$
\& $\quad \lim _{x \rightarrow 3^{+}} \frac{x^{2}+9}{x-3}=\infty$
- Since there is no real number that $g(x)$ approaches, we simply say that this limit does not exist

1/25/15
Mr. Santowski - Calculus

(D) Limits at Infinity

- Consider the following limit(s):

$$
\lim _{x \rightarrow \infty} f(x) \text { if } f(x)=\frac{1}{x^{n}}
$$

- Determine the limiting value(s) if possible.

1/25/15
Mr. Santowski - Calculus

(D) Examples of Limits at Infinity

(E) Limit Laws

- The limit of a constant function is the constant
- The limit of a sum is the sum of the limits
- The limit of a difference is the difference of the limits
- The limit of a constant times a function is the constant times the limit of the function
- The limit of a product is the product of the limits
- The limit of a quotient is the quotient of the limits (if the limit of the denominator is not 0)
- The limit of a power is the power of the limit
- The limit of a root is the root of the limit

1/25/15
Mr. Santowski-Calculus

(E) Limit Laws

- Here is a summary of some important limits laws:
- (a) sum/difference rule $\rightarrow \lim [f(x) \pm g(x)]=\lim f(x) \pm \lim g(x)$
- (b) product rule $\rightarrow \lim [f(x) \times g(x)]=\lim f(x) \times \lim g(x)$
- (c) quotient rule $\rightarrow \lim [f(x) \div g(x)]=\lim f(x) \div \lim g(x)$
- (d) constant multiple rule $\rightarrow \lim [k f(x)]=k \times \lim f(x)$
- (e) constant rule $\rightarrow \lim (k)=k$
- These limits laws are easy to work with, especially when we have rather straight forward polynomial functions

1/25/15
Mr. Santowski - Calculus

(E) Limit Laws - Examples

- Find $\lim _{x \rightarrow 2}\left(3 x^{3}-4 x^{2}+11 x-5\right)$ using the limit laws
- $\lim _{x \rightarrow 2}\left(3 x^{3}-4 x^{2}+11 x-5\right)$
- $=3 \lim _{x \rightarrow 2}\left(x^{3}\right)-4 \lim _{x \rightarrow 2}\left(x^{2}\right)+11 \lim _{x \rightarrow 2}(x)-\lim _{x \rightarrow 2}(5)$
- $=3(8)-4(4)+11(2)-5$ (using simple substitution or use GDC)
- $=25$
- For the rational function $f(x)$, find
- $\lim _{x \rightarrow 2}\left(2 x^{2}-x\right) /\left(0.5 x^{3}-x^{2}+1\right)$
- $=\left[2 \lim _{x \rightarrow 2}\left(x^{2}\right)-\lim _{x \rightarrow 2}(x)\right] /\left[0.5 \lim _{x \rightarrow 2}\left(x^{3}\right)-\lim _{x \rightarrow 2}\left(x^{2}\right)+\lim _{x \rightarrow 2}(1)\right]$
$\begin{aligned} \text { - } & =\left(2 \lim _{x \rightarrow 2}\left(x^{2}\right)-\lim _{x-1}\right. \\ = & =(8-2) /(4-4+1)\end{aligned}$
- $=6$

(E) Limit Laws and Graphs

```
- From the graph on this or the
    previous page, determine the
    following limits:
- (1) }\mp@subsup{\operatorname{lim}}{x->-2}{}[f(x)+g(x)
- (2) }\mp@subsup{\operatorname{lim}}{x->-2}{x->-2[f(f(x)\mp@subsup{)}{}{2}-g(x)]
-(3) }\mp@subsup{\operatorname{lim}}{x->-2}{x->-2}[f(x)\timesg(x)
- (4) }\mp@subsup{\operatorname{lim}}{x->-2}{[f(f)}\divg(x)
- (5) }\mp@subsup{\operatorname{lim}}{x->1}{}[f(x)+5g(x)
- (6) }\mp@subsup{\operatorname{lim}}{x->1}{[1/2f(x)\times(g(x)\mp@subsup{)}{}{3}]
- (7) }\mp@subsup{\operatorname{lim}}{x->2}{}[f(x)\divg(x)
- (8) }\mp@subsup{\operatorname{lim}}{x->2}{x->2}[g(x)\divf(x)
-(8) }\mp@subsup{\operatorname{lim}}{x->2}{2[g(x)\divf(x)]
- (9) }\mp@subsup{\operatorname{lim}}{x->3}{}[f(x)\divg(x)
```


(I) Exploration

- Research the DELTA-EPSILON definition of a limit
- Tell me what it is and be able to use it
- MAX 2 page hand written report (plus graphs plus algebra) + 2 Q quiz

1/25/15
Mr. Santowski - Calculus

