

(A) Average Rates of Change: Motion

- If a ball is thrown into the air with a velocity of 30 m/s, its height, y, in meters after t seconds is given by y(t)=30t-5t².
- Find the average velocity for the time period between:
- (i) t = 2s and t = 3s
- (ii) t = 2.5s and t = 3s
- (iii) t = 2.9 and t = 3s

 (B) Estimating T Using Secant Slo The point P(1,3) lie If Q is a second poslope of the secan 	angent Slopes – pes es on the curve y = $4x - x^2$. wint on the curve, find the t PQ if the x-coordinate of		
Q is:			
□ (i) x = 2	(vi) x = 0		
□ (ii) x = 1.5	(vii) x = 0.5		
□ (iii) x = 1.1	(viii) x = 0.9		
□ (iv) x = 1.01	(ix) x = 0.99		
□ (v) x = 1.001	(x) x = 0.999		
1/19/15 HL Math & Calculus - Santowski			

So the slope of the tangent line (or the instantaneous rate of change of height) is 6.2 → so, in context, the rate of change of a distance is called a speed (or velocity), which in this case would be 6.2 m/s at t = 1 sec. → now simply repeat, but use t = 2,3 rather than 1

HL Math & Calculus - Santowski

29

1/19/15

1/19/15

(H) Applications - Determine the Slope of a Tangent Line

A business estimates its profit function by the formula P(x) = x³ - 2x + 2 where x is millions of units produced and P(x) is in billions of dollars. Determine the value of the tangent slope at x = ½ and at x = 1½. How would you interpret these values (that correspond to tangent slopes)?

HL Math & Calculus - Santowski

5

30

HI. Math & Calculus - Santowski

31

1/19/15

Example:	$y = x^2 - 4x - 8$	3. for	the ir	iterva	al [-3,	,8]	
1. Draw g2. Find the3. Repeat	raph. e tangent slo for x = -2,-1,	pe at ,7,	x = -: 8 and	3 usi d tab	ng th ulate	e TI-84	
X -3Slope -10	-2 -1 0 1 -8 -6 -4 -2	2 3	34 24	5 6	67 810	8 12	
4. Tabula5. Find be	e data and c st regressior	reate 1 equa	scatt ation	er-pl	ot		

