

Lesson Objectives

Understand from a geometric perspective WHY the ambiguous case exists

- Understand how to identify algebraically that their will be

2 solutions to a given sine law question

- Solve the 2 triangles in the ambiguous case
- See that the sine ratio of a acute angle is equivalent to the sine ratio of its supplement

1/11/15
Math HL- Santowski ${ }_{2}$

(B) Sine Law - Scenario \#2

- In our second look, let's change the measures of a and b, so that $a=2$ and $b=3$ (so now the shorter of the two given sides is opposite the given angle)
- Then $\sin \beta=b \sin \alpha / a$

- And $\sin \beta=3 \sin 30 / 2$
- So $\angle B=48.6^{\circ}$
- BUT!!!!! there is a minor problem here

1/11/15
(F) Considerations with Sine Law

- If you are given information about non-right triangle and you know 2 angles and 1 side, then ONLY one triangle is possible and we never worry in these cases
- If you know 2 sides and 1 angle, then we have to consider this "ambiguous" case issue
. If the side opposite the given angle IS THE LARGER of the 2 sides \rightarrow NO WORRIES
- If the side opposite the given angle IS THE SHORTER of the 2 sides \rightarrow ONLY NOW WILL WE CONSIDER THIS "ambiguous" case

- WHY????

1/11/15
Math HL- Santowski

Case \#3 - if $\mathrm{a}<\mathrm{b}$

Case \#4 - the Ambiguous Case

Examples of Sine Law
$=$ if $\angle \mathrm{A}=44.3^{\circ}$ and $\mathrm{a}=11.5$ and $\mathrm{b}=7.7$ find the
missing information.

Examples of Sine Law
if $\angle \mathrm{A}=29.3^{\circ}$ and $\mathrm{a}=12.8$ and $\mathrm{b}=20.5$

```
Examples of Sine Law
- if }\angle\textrm{A}=29.3\mathrm{ and a=12.8 and b=20.5
- All the other cases fail, because bsinA<a<b
    10<a (12.8)<20.5, which is true.
    - Then we have two triangles, solve for both
        angles
```



```
1/11/15
Math HL- Santowski

\section*{Examples of Sine Law}
- ex. 1. In \(\triangle A B C, \angle A=42^{\circ}, a=10.2 \mathrm{~cm}\) and \(\mathrm{b}=8.5 \mathrm{~cm}\), find the other angles
- ex. 2. Solve \(\triangle A B C\) if \(\angle A=37.7^{\circ}, a=30 \mathrm{~cm}, b=42 \mathrm{~cm}\)

Examples of Sine Law
- ex. 1. \(\ln \triangle \mathrm{ABC}, \angle \mathrm{A}=42^{\circ}, \mathrm{a}=10.2 \mathrm{~cm}\) and \(\mathrm{b}=8.5 \mathrm{~cm}\), find the other angles
- First test \(\rightarrow\) side opposite the given angle is longer, so no need to consider the ambiguous case \(\rightarrow\) i.e. \(a>b \rightarrow\) therefore only one solution
- ex. 2. Solve \(\triangle A B C\) if \(\angle A=37.7, a=30 \mathrm{~cm}, \mathrm{~b}=42 \mathrm{~cm}\)
- First test \(\rightarrow\) side opposite the given angle is shorter, so we need to consider the possibility of the "ambiguous case" \(\rightarrow \mathrm{a}<\mathrm{b} \rightarrow\) so there are either \(0,1,2\) possibilities.
- So second test is a calculation \(\rightarrow\) Here \(a(30)>b \sin A(25.66)\), so there are two cases
\(\qquad\)
1/11/15 Math HL- Santowski```

