

Examples - Right Triangle Trigonometry
4. Find the measure of $\angle \theta$, to the neares - tenth of a degree.

c)

. 1415
1/11/15 Math SLL - Santowski ${ }^{2}$

Examples - Right Triangle Trigonometry

- (6) Assuming that the Earth has a radius of 6380 km , determine the length of the $35^{\text {th }}$ parallel.
- (7) To determine the width of a river, a surveyor marks a point on the bank of the river, A . Her partner is standing directly across the river from her at point C . The surveyor then walks 100 m downstream to point B, where she now has a line of sight to her partner at an angle of 58° relative to the river bank. Determine the width of the river.
\qquad
1/11/15
Math SL1 - Santowsli

Examples - Right Triangle Trigonometry
5
A forest ranger in a tower 128.0 m high sights two fires in the same line
of sight with angles of depression 42° and 61°. How far apart are the fires?
$6 \quad$From a window 26.0 m above the ground, the angle of elevation of the top of a building is 39°, while the angle of depression to the bottom of the building is 29°. How high is the building?
7A helicopter, directly above a building, sights a position, A, on the ground at an angle of depression of 38°. The helicopter then rises vertically above the building, a distance of d, in metres, and sights position A, now at an angle of depression of 52°. If point A is 352.0 m from the building, how far has the helicopter risen?
. Nath sL1 - Santowski

Examples - Right Triangle Trigonometry

8 The angle of elevation of the top of a building from a point, A, 56.0 m from the building is 58°. A flagpole is on top of the building. The angle of elevation from point A to the top of the flagpole is 62°. What is the length of the flagpole?
9 Two spotlights are placed 10.0 m apart on the same line of sight. The blue spotlight makes an angle of elevation of 45° and hits the bottom of a mirrored ball. The white spotlight makes an angle of elevation of 70° and hits the same area. What is the height of the bottom of the ball?
10 For the diagram, prove that $h=\frac{d}{\cot \alpha-\cot \theta}$.
-
Math SL1 - Santowski

If none of the angles of a triangle is a right angle, the triangle is called oblique.

All angles are acute

Two acute angles, one obtuse angle
1/11/15 HL. Math - Santowski

Sine Law - Summary
- The law of Sines is used to solve triangles in
which we have ASA, SAA and also SSA
- The law of Cosines is used to solve triangles
in which we have SAS and SSS

Sxamples

(D) Examples Sine Law

- We can use these new trigonometric relationships in solving for unknown sides and angles in acute triangles:
- ex 4. Find A in ABC if $a=10.4, c=12.8$ and $C=75^{\circ}$
- ex 5. Find a in ABC if $A=84^{\circ}, B=36^{\circ}$, and $b=3.9$
- ex 6. Solve EFG if $E=82^{\circ}, e=11.8$, and $F=25^{\circ}$
- There is one limitation on the Sine Law, in that it can only be applied if a side and its opposite angle is known If not, the Sine Law cannot be used

(D) Examples Sine Law

- Mark is a landscaper who is creating a triangular planting garden. The homeowner wants the garden to have two equal sides and contain an angle of 75°. Also, the longest side of the garden must be side of the g
exactly 5 m .
(a) How long is the plastic edging that Mark needs to surround the garden?
(b) Determine the area of the garden.

(D) Cosine Law - Examples

Solve the triangle: $b=3, c=4, \alpha=40^{\circ}$ (SAS)

Further Mixed Practice Opportunities

- Nelson 10 textbook, Chap $6.1 \rightarrow$
http://mrsantowski.tripod.com/ 2010Math2Honors/Resources/ NelsonS61p499.pdf
- Nelson 10 textbook, Chap $6.2 \rightarrow$
http://mrsantowski.tripod.com/
2010MathSLY1/Assessments/M11SB515.pdf

