Lesson 27 – Graphs of Trigonometric Functions IB Math HL

Lesson Objectives 1. Relate the features of sinusoidal curves to modeling periodic phenomenon 2. Transformations of sinusoidal functions and their features

Modeling Periodic Phenomenon

- A spring bounces up and down according to the model d(t) = 0.5 cos 2t, where d is the displacement in centimetres from the rest position and t is the time in seconds. The model does not consider the effects of gravity
- (a) Draw the graph.
- (b) Explain why the function models periodic behaviour.
- (c) What is the period and what does it represent in the context of this question?
- (d) What is the amplitude and what does it represent in the context of this question?

12/8/14

Math HL

Modeling Periodic Phenomenon

- A small windmill has its center 6 m above the ground and the blades are 2 m in length. In a steady wind, one blade makes a rotation in 12 sec. Use the point P as a reference point on a blade that started at the highest point above the ground.
- (a) Determine an equation of the function that relates the height of a tip of a blade, h in meters, above the ground at a time t.
- (b) What is the height of the point P at the tip of a blade at 5s? 40s?
- (c) At what time is the point P exactly 7 m above the ground?

12/8/14

Math HL

Analysis of Sinusoidal Graphs

- (a) Determine the maximums and zeroes of the function f(x) = -2sin(2x-60°)+1
- (b) Determine the equation of the asymptotes and zeroes of the function $g(\theta) = \tan\left(\frac{\theta}{4} + \pi^2\right)$
- (c) Determine the period and the equation of the axis of the curve of $\int_{y=5}^{\infty} -\sqrt{2} \cos\left(\frac{3}{x}x\right)$

12/8/14

Math HL

Analysis of Systems of Trig Functions

- (a) Sketch y = $\sin(2x-\pi)$, given the domain of $[0,2\pi]$
- (b) Sketch y = cos(x), given the same domain
- (c) Provide a solution to the equation $sin(2x-\pi) = cos(x)$

12/8/14

Math HL

Working with Graphs of the Secondary Trig Functions

- (a) Sketch 2 cycles of the graph of y = sin(x)
- (b) Hence, sketch y = csc(x) & label key features (asymptotes, max/min, x- & y-int)
- (c) Hence, sketch 2 cycles of y = 2csc(2x) 4 and label key features (asymptotes, max/min, x- & y-int.

12/8/14

Math HL

Working with Graphs of the Secondary Trig Functions

- (a) Sketch a graph of two periods of f(x) = 2 + cos(x)
- (b) Sketch a graph of two periods of g(x) = -sec(x)
- (c) How many solutions would you predict for the system f(x) = g(x)? Find the exact values of these solutions

12/8/14

Math HL

12

Advanced Sinusoidals

- (a) Use your GDC to graph $f(x) = |\sin(x)|$ on $[-2\pi, 4\pi]$
- (b) State the 6 maximums of y = f(x)
- (c) Now graph $g(x) = e^{-0.1x}f(x)$
- (d) Determine the 6 maximums of y = g(x)
- (e) Now graph y = e^{-0.1x}
- (f) Explain what $y = e^{-0.1x}$ does to the sinusoidal function.
- (g) Explain what dampened simple harmonic motion is

12/8/14 Math HL

Advanced Sinusoidals

 Predict the domains of the following composite functions

(a)
$$f(x) = \sqrt{\ln(\sec(x))}$$

(b)
$$g(x) = \cot(\ln(x))$$

(c)
$$h(x) = \frac{\cot(x)}{1 - 2\sin^2(x)}$$

12/8/14 Math HL. 14

Sinusoidals: $f(x) = A\sin(x) + B\cos(x)$

- (a) Graph the function $f(x) = \sqrt{3} \sin x + \cos x$
- (b) This function can be rewritten in the form $g(x) = K \sin(x + \alpha)$. Determine the values of K and α .
- (c) Determine the value of $sin(\alpha)$ and $cos(\alpha)$

12/8/14 Math HL 15

Sinusoidals: $f(x) = A\sin(x) + B\cos(x)$

- (a) Graph the function $f(x) = 2\sin x 2\cos x$
- (b) This function can be rewritten in the form $g(x) = K \sin(x + \alpha)$. Determine the values of K and α .
- (c) Determine the value of $sin(\alpha)$ and $cos(\alpha)$

8/14 Math HL. 16

Sinusoidals: $f(x) = A\sin(x) + B\cos(x)$

The function $f(x) = A\sin x + B\cos x$ can be rewritten in the form $g(x) = K\sin(x + \alpha)$

Predict the values of K and α , based upon the connections you established in your previous work on the previous 2 slides

Test your conjecture by rewriting $f(x) = 5\sin x + 12\cos x$ as $g(x) = A\sin(x + \alpha)$

12/8/14 Math HL. 17

Review of Inverse Functions

- Q → What is the significance of a function being 1:1 in the context of inverse functions?
- \blacksquare Q \rightarrow Is $f(x) = x^2$ a 1:1 function?
- Q → How did we "resolve" this issue with the function f(x) = x²?

12/8/14 Precalculus - Santowski 18

Restricted Domains

- (a) How would you restrict the domain of g(x) = sin(x) so that its inverse is a function? Use your calculator to justify your choice. (numerically & graphically)
- (b) How would you restrict the domain of g(x) = cos(x) so that its inverse is a function? Use your calculator to justify your choice. (numerically & graphically)
- (c) How would you restrict the domain of g(x) = tan(x) so that its inverse is a function? Use your calculator to justify your choice. (numerically & graphically)

12/8/14 Precalculus - Santowski 19

