

FAST FIVE - Skills/Concepts Review

- EXPLAIN the difference between the following 2 equations:
- (a) Solve $\sin (x)=0.75$
- (b) Solve $\sin ^{-1}(0.75)=x$
- Now, use you calculator to solve for x in both equations
- Define "principle angle" and "related acute angle"

11/30/14
HL. Math ${ }_{2}$

(A) Review

- We have two key triangles to work in two key ways \rightarrow (i) given a key angle, we can determine the appropriate value of the trig ratio \& (ii) given a key ratio, we can determine the value(s) of the angle(s) that correspond to that ratio
- We know what the graphs of the two parent functions look like and the 5 key points on each curve
11/30/14 H. Math

(B) Solving Linear Trigonometric Equations - Solns
- Work with the example of $\sin (\theta)=-\sqrt{ } 3 / 2$
- Step 1: determine the related acute angle (RAA) from your knowledge of the two triangles (in this case, simply work with the ratio of $\sqrt{ } 3 / 2) \rightarrow \theta=60^{\circ}$ or $\pi / 3$
- Step 2: consider the sign on the ratio (-ve in this case) and so therefore decide in what quadrant the angle must lie $\boldsymbol{\rightarrow}$ quad. III or IV in this example

HL. Math

(B) Solving Linear Trigonometric Equations

- One important point to realize \rightarrow I can present the same original equation $(\sin (\theta)=-\sqrt{ } 3 / 2)$ in a variety of ways:
- (i) $2 \sin (\theta)=-\sqrt{ } 3$
- (ii) $2 \sin (\theta)+\sqrt{ } 3=0$
- (iii) Find the x-intercepts of $f(\theta)=2 \sin (\theta)+\sqrt{ } 3$
- (iv) Find the zeroes of $f(\theta)=2 \sin (\theta)+\sqrt{ } 3$

Step 4: from the diagram determine the principle angles $\rightarrow 240^{\circ}$ and 300° or $4 \pi / 3$ and $5 \pi / 3 \mathrm{rad}$.

11/30/14
\qquad
11/30/1
H. Math

(B) Solving Linear Trigonometric Equations

- A second important point to realize $\boldsymbol{\rightarrow}$ I can ask you to solve the equation in a variety of restricted domains (as well as an infinite domain)
- (i) Solve $2 \sin (\theta)=-\sqrt{3}$ on $[-2 \pi, 2 \pi]$
(ii) Solve $2 \sin (\theta)+\sqrt{ } 3=0$ on $[-4 \pi, \pi / 2)$
- (iii) Find the x-intercepts of $f(\theta)=2 \sin (\theta)+\sqrt{ } 3$ on ($-2 \pi, 0$)
- (iv) Find ALL the zeroes of $f(\theta)=2 \sin (\theta)+\sqrt{ } 3$, given an infinite domain.

11/30/14
(C) Further Examples

- Solve the following without a calculator

$$
\begin{aligned}
& 2 \cos (\theta)+2=3 \text { for } \theta \in(0,4 \pi) \\
& 2 \tan (\theta)-\sqrt{2}=0 \text { for } \theta \in(0,3 \pi) \\
& \sin (\theta)+1=2 \text { for } \theta \in(-2 \pi, 2 \pi)
\end{aligned}
$$

11/30/14
H. Math

(C) Further Practice
$\qquad$$\sin \theta=0$ for $0 \leq \theta \leq 4 \pi$ $\sin \theta=1$ $1+\cos \theta=0$ for $-2 \pi \leq \theta \leq 2 \pi$ $\tan \theta=0$ for $0 \leq \theta \leq 3 \pi$

(C) Further Practice

- Solve without a calculator

$$
\begin{aligned}
& \sqrt{3}+3 \sin x=5 \sin x \text { for } x \in(0,4 \pi) \\
& 8 \cos x+1=2 \cos x+4 \text { for } x \in(-4 \pi, 0) \\
& \sin x-4=-2 \sin x \text { for } x \in(-2 \pi, 2 \pi) \\
& \sin ^{2} x-3=-3 \sin ^{2} x \text { for } x \in(0,2 \pi)
\end{aligned}
$$

${ }^{11 / 30 / 14}$
HL. Math ${ }^{14}$
(D) Review - Graphic Solutions
We know what the graphs of the trigonometric functions
look like
We know that when we algebraically solve an equation
in the form of $f(x)=0$, then we are trying to find the roots/
zeroes/x-intercepts
So we should be able to solve trig equations by graphing
them and finding the x-intercepts/intersection points

(E) Examples (with Technology)

- Solve the equation $3 \sin (x)-2=0$

We know that when we algebraically solve an equation in the form of $f(x)=0$, then we are trying to find the roots/ zeroes/x-intercepts

So we should be able to solve trig equations by graphing them and finding the x-intercepts/intersection points

(E) Examples

- Solve the equation $3 \sin (x)-2=0$
- The algebraic solution would be as follows:
- We can set it up as $\sin (x)=2 / 3$ so $x=\sin ^{-1}(2 / 3)$ giving us 41.8° (and the second angle being $180^{\circ}-41.8^{\circ}=$ 138.2°
- Note that the ratio $2 / 3$ is not one of our standard ratios corresponding to our "standard" angles ($30,45,60$), so we would use a calculator to actually find the related acute angle of 41.8°

(E) Examples

- We can now solve the equation $3 \sin (x)-2=0$ by graphing $f(x)=$ $3 \sin (x)-2$ and looking for the x-intercepts

11/30/14

(E) Examples
Solve the following equations:
$\qquad \begin{array}{l}6 \sin \theta+4=0 \text { for }-\pi \leq \theta \leq \pi \\ 4 \sin 2 \theta=7 \cos \theta \text { for }-1.5 \leq \theta \leq 3 \\ 2 \sin x-4 \sin ^{2} x=2 \tan \left(\frac{x}{2}\right) \text { for }-8 \leq \theta \leq 0\end{array}$
ни. мath

Lesson 25 PART 2 - Solving
Linear Trigonometric Equations
Involving Angle Changes

IB Math HL
/30/14
HL. Math
FAST FIVE - Skills/Concepts Review

- EXPLAIN the difference amongst the following 3 functions:
(a) $f(\theta)=\cos (\theta)$
(b) $f(\theta)=\cos (2 \theta)$
(c) $f(\theta)=\cos \left(\theta+\frac{\pi}{3}\right)$
\longrightarrow
11/30/14
HL. Math

FAST FIVE - Skills/Concepts Review

- EXPLAIN the difference in the solutions to the following 3 equations:
(a) $-\frac{1}{2}=\cos (\theta)$ on $[0,2 \pi]$
(b) $-\frac{1}{2}=\cos (2 \theta)$ on $[0,2 \pi]$
(c) $-\frac{1}{2}=\cos \left(\theta+\frac{\pi}{3}\right)$ on $[0,2 \pi]$

11/30/14

(A) Review

- We have two key triangles to work in two key ways \rightarrow (i) given a key angle, we can determine the appropriate value of the trig ratio \& (ii) given a key ratio, we can determine the value(s) of the angle(s) that correspond to that ratio
- We know what the graphs of the two parent functions look like and the 5 key points on each curve
11/30/14 HL. Math

(B) Example Set \#1

- Without the use of a calculator, prepare an algebraic solution to the following equations:
(a) $\sin (\theta)=0.5$ on $[\pi, 4 \pi]$
(b) $\cos (\theta)+1=0$ on $[-2 \pi, 4 \pi]$
(c) $3 \tan (\theta)=-\sqrt{3}$ on $[-\pi, \pi]$

11/30/14 H. Math 25

(D) Example Set \#3

- Without the use of a calculator, prepare an algebraic solution to the following equations:
(a) $\sin (2 \theta)=0.5$ on $[\pi, 4 \pi]$
(b) $\cos \left(\theta-\frac{\pi}{4}\right)+1=0$ on $[-2 \pi, 4 \pi]$
(c) $3 \tan \left(2 \theta-\frac{\pi}{2}\right)=-\sqrt{3}$ on $[-\pi, \pi]$

11/30/14
HL. Math

(E) Further Examples

- 1. Solve the equation

$$
\sin (\theta)+\cos \left(\frac{\pi}{2}-\theta\right)-1=0 \text { for } \theta \in R
$$

- 2. Determine the points of intersection of these two functions:

$$
f(\theta)=\sin \left(\frac{\theta}{3}\right) \text { and } g(\theta)=\cos \left(\frac{\theta}{3}\right)
$$

11/30/14 H. Math

(C) Example Set \#2

- Use your graphing calculator to prepare a GRAPHIC solution to the following equations:
(a) $\sin (2 \theta)=0.5$ on $[\pi, 4 \pi]$
(b) $\cos \left(\theta-\frac{\pi}{4}\right)+1=0$ on $[-2 \pi, 4 \pi]$
(c) $3 \tan \left(2 \theta-\frac{\pi}{2}\right)=-\sqrt{3}$ on $[-\pi, \pi]$

11/30/14 ${ }^{26}$

(D) Example Set \#4

- Without the use of a calculator, prepare an algebraic solution to the following equations:
(a) $\sin (2 \theta)=0.5 \quad$ on $\theta \in R$
(b) $\cos \left(\theta-\frac{\pi}{4}\right)+1=0 \quad$ on $\theta \in \mathrm{R}$
(c) $3 \tan \left(2 \theta-\frac{\pi}{2}\right)=-\sqrt{3} \quad$ on $\theta \in \mathrm{R}$

11/30/14
HL. Math

(E) Further Examples

- 3. Find the x-intercepts of

$$
h(\theta)=2-\sec \left(\frac{\theta}{2}\right) \text { on } \theta \in R
$$

- 4. Determine the zeroes of

$$
\underbrace{f(\theta)=\sqrt{2} \csc \left(\frac{\theta}{2}-\pi\right)-2}_{\text {fill }}
$$

(F) Solving Equations with Technology

- The monthly sales of lawn equipment can be modelled by the following function, where S is the monthly sales in thousands of units and t is the time in months, $t=1$ corresponds to January.

$$
S(t)=32.4 \sin \left(\frac{\pi}{6}\right) t+53.5
$$

- (a) How many units will be sold in August?
- (b) In which month will 70000 units be sold?
- (c) According to this model, how many times will the company sell 70000 units over the next ten years?

2130142
11/30/14
H. Math

