<u>Lesson 20 - Laws of</u> <u>Logarithms</u> B Math HL1 - Santowski

Lesson Objectives

11/1/2014

- Understand the rationale behind the "laws of logs"
- Apply the various laws of logarithms in solving equations and simplifying expressions

IB Math HL1 - Santowski

Summary of Laws		
Logs as exponents	$b^{\log_b x} = x$	
Product Rule	$\log_a(mn) = \log_a m + \log_a n$	
Quotient Rule	$\log_{a}(m/n) = \log_{a}(m) - \log_{a}(n)$	
Power Rule	$Log_a(m^p) = (p) \times (log_a m)$	
11/1/2014	IB Math HI.1 - Santowski	3

(A) Properties of Logarithms – Product Law Recall the laws for exponents → product of powers → (b^x)(b^y) = b^(x+y) → so we ADD the exponents when we multiply powers For example → (2³)(2⁵) = 2⁽³⁺⁵⁾ So we have our POWERS → 8 x 32 = 256

(A) Properties of Logarithms – Product Law A. Now, let's consider this from the INVERSE viewpoint B. We have the ADDITION of the exponents 3 + 5 = 8 B. Ut recall from our work with logarithms, that the exponents are the OUTPUT of logarithmic functions S - 3 + 5 = 8 becomes log₂8 + log₂32 = log₂256 A. Now, HOW do we get the right side of our equation to equal the left? B. Call that 8 x 32 = 256 So log₂(8 x 32) = log₂8 + log₂32 = log₂256

11

(F) Examples

11/1/2014

Use the logarithm laws to simplify the following:

IB Math HL1 - Santowski

19

- (a) $\log_2 xy \log_2 x^2$
- (b) $\log_2 \frac{8x^2}{y} + \log_2 2xy$
- (c) $\log_3 9xy^2 \log_3 27xy$
- (d) $\log_4(xy)^3 \log_4 xy$
- (e) $\log_3 9x^4 \log_3 (3x)^2$

(F) Examples Exercise 2. Given $\log_{10}(5.0) = 0.70 \ \log_{10}(2.0) = 0.30 \ \log_{10}(3.0) = 0.48, without a calculater, determine:$ $(1) <math>\log_{10}(6.0)$ (2) $(1) \ \log_{10}(0.40)$ (3) $\log_{10}(4)$ (3) $(2) \ (3) \ \log_{10}(4.50)$ (4) $\log_{10}(4.5)$ (9) $\log_{10}(\sqrt{3.0})$ (5) $\log_{10}(4.5)$ (10) $\log_{10}(0.036)$