Lesson 20 - Laws of
 Logarithms

IB Math HL1 - Santowski

11/1/2014
IB Math HLL - Santowski

Lesson Objectives

- Understand the rationale behind the "laws of logs"
- Apply the various laws of logarithms in solving equations and simplifying expressions

> 11/1/2014 IB Math HLL - Santowski

(A) Properties of Logarithms - Product Law

- Recall the laws for exponents $\boldsymbol{\rightarrow}$ product of powers $\rightarrow\left(b^{x}\right)\left(b^{y}\right)=b^{(x+y)} \rightarrow$ so we ADD the exponents when we multiply powers
- For example $\rightarrow\left(2^{3}\right)\left(2^{5}\right)=2^{(3+5)}$
- So we have our POWERS $\boldsymbol{\rightarrow} 8 \times 32=256$

$11 / 1 / 2014$	IB Math HL1 - Santowski	4

(A) Properties of Logarithms - Product Law

- Now, let's consider this from the INVERSE viewpoint
- We have the ADDITION of the exponents
- $3+5=8$
- But recall from our work with logarithms, that the exponents are the OUTPUT of logarithmic functions
- So $\rightarrow 3+5=8$ becomes $\log _{2} 8+\log _{2} 32=\log _{2} 256$
- Now, HOW do we get the right side of our equation to equal the left?
- Recall that $8 \times 32=256$
- So $\log _{2}(8 \times 32)=\log _{2} 8+\log _{2} 32=\log _{2} 256$

(A) Properties of Logarithms - Formal Proof of Product Law

- Express $\log _{\mathrm{a}} \mathrm{m}+\log _{\mathrm{a}} \mathrm{n}$ as a single logarithm
- We will let $\log _{\mathrm{a}} \mathrm{m}=\mathrm{x}$ and $\log _{\mathrm{a}} \mathrm{n}=\mathrm{y}$
- So $\log _{\mathrm{a}} \mathrm{m}+\log _{\mathrm{a}} \mathrm{n}$ becomes $\mathrm{x}+\mathrm{y}$
- But if $\log _{a} m=x$, then $a^{x}=m$ and likewise $a^{y}=n$
- Now take the product $(m)(n)=\left(a^{x}\right)\left(a^{y}\right)=a^{x+y}$
- Rewrite $m n=a^{x+y}$ in log form $\rightarrow \log _{a}(m n)=x+y$
- But $x+y=\log _{a} m+\log _{a} n$
- So thus $\log _{a}(m n)=\log _{a} m+\log _{a} n$

11/1/2014
B Math HLL - Santowski
(B) Properties of Logarithms - Quotient Law

- Recall the laws for exponents \rightarrow Quotient of powers $\rightarrow\left(b^{x}\right) /\left(b^{y}\right)=b^{(x-y)} \rightarrow$ so we subtract the exponents when we multiply powers
- For example $\boldsymbol{\rightarrow}\left(2^{8}\right) /\left(2^{3}\right)=2^{(8-3)}$
- So we have our POWERS $\rightarrow 256 \div 8=32$

11/1/2014
IB Math HL1 - Santowski

(C) Properties of Logarithms- Logarithms of Powers

- Now work with $\log _{3}(625)=\log _{3}\left(5^{4}\right)=x$:
- we can rewrite as $\log _{3}(5 \times 5 \times 5 \times 5)=x$
- we can rewrite as $\log _{3}(5)+\log _{3}(5)+\log _{3}(5)+\log _{3}(5)=x$
- We can rewrite as $4\left[\log _{3}(5)\right]=4 \times 1=4$
- So we can generalize as $\log _{3}\left(5^{4}\right)=4\left[\log _{3}(5)\right]$
- So if $\log _{3}(625)=\log _{3}(5)^{4}=4 \times \log _{3}(5) \rightarrow$ It would suggest a rule of logarithms $\rightarrow \log _{a}\left(b^{x}\right)=x \log _{a} b$

[^0] B Math HLL - Santowski

(D) Properties of Logarithms - Logs as

 Exponents- Consider the example $3^{\log _{3} 5}=x$
- Recall that the expression $\log _{3}(5)$ simply means "the exponent on 3 that gives 5 " \rightarrow let's call that y
- So we are then asking you to place that same exponent (the y) on the same base of 3
- Therefore taking the exponent that gave us 5 on the base of $3(y)$ onto a 3 again, must give us the same $5!!!!$
- We can demonstrate this algebraically as well

11/1/2014
IB Math HLL - Santowski
12

(D) Properties of Logarithms - Logs as

Exponents

- Let's take our exponential equation and write it in logarithmic form
- So $3^{\log _{3} 5}=x$ becomes $\log _{3}(x)=\log _{3}(5)$
- Since both sides of our equation have a $\log _{3}$ then x $=5$ as we had tried to reason out in the previous slide
- So we can generalize that $\quad b^{\log _{b} x}=x$

(F) Examples

- (i) $\log _{3} 54+\log _{3}(3 / 2)$
- (ii) $\log _{2} 144-\log _{2} 9$
- (iii) $\log 30+\log (10 / 3)$
- (iv) which has a greater value
- (a) $\log _{3} 72-\log _{3} 8$ or (b) $\log 500+\log 2$
- (v) express as a single value
- (a) $3 \log _{2} x+2 \log _{2} y-4 \log _{2} a$
- (b) $\log _{3}(x+y)+\log _{3}(x-y)-\left(\log _{3} x+\log _{3} y\right)$
- (vi) $\log _{2}(3 / 4)-\log _{2}(24)$
- (vii) $\left(\log _{2} 5+\log _{2} 25.6\right)-\left(\log _{2} 16+\log _{3} 9\right)$
11/1/2014

(E) Summary of Laws

Logs as exponents	$b^{\log _{b} x}=x$
Product Rule	$\log _{\mathrm{a}}(\mathrm{mn})=\log _{\mathrm{a}} \mathrm{m}+\log _{\mathrm{a}} \mathrm{n}$
Quotient Rule	$\log _{\mathrm{a}}(\mathrm{m} / \mathrm{n})=\log _{\mathrm{a}}(\mathrm{m})-\log _{\mathrm{a}}(\mathrm{n})$
Power Rule	$\log _{\mathrm{a}}\left(\mathrm{m}^{\mathrm{p}}\right)=(\mathrm{p}) \times\left(\log _{\mathrm{a}} \mathrm{m}\right)$

11/1/2014 IB Math HLL - Santowski 14

(F) Examples

Solve for x
$\log _{2} x=2 \log _{2} 7+\log _{2} 3$
$\log _{2} x+\log _{2} 11=\log _{2} \sqrt{99}$
$\log \sqrt[3]{x}+\log 13=-\log \frac{1}{91}$
$\log _{5}(x+1)+\log _{5} 3=2$
$\log _{3}(x-2)+\log _{3} x=1$
$\log x+\log (x-5)=\log (2 x-12)$

11/1/2014 IB Math HLL1 - Santowski

- Solve for x and verify your solution

${ }^{11 / 1 / 2014}$	IB Math HL1 - Santowski	16

(F) Examples

- Solve and verify
- If $a^{2}+b^{2}=23 a b$, prove that
$\log _{2} x=\frac{1}{3} \log _{2} 3+\log _{2} \sqrt{3}$
$\log _{5}(x-1)-\log _{5}(x-5)=\log _{5} \frac{1}{x+3}$
$\log 250-\log 2=3 \log \frac{1}{x}$

11/1/2014

(F) Examples

- Write each single log expression as a sum/difference/product of logs
$\log \frac{a b c^{2}}{d^{3}}$
$\log \frac{x \sqrt[3]{y}}{z^{5}}$
$\ln \sqrt{\sin x \ln x}$

11/1/2014 IB Math HLL - Santowski
(F) Examples

Use the logarithm laws to simplify the following:
(a) $\log _{2} x y-\log _{2} x^{2}$
(b) $\log _{2} \frac{8 x^{2}}{y}+\log _{2} 2 x y$
(c) $\log _{3} 9 x y^{2}-\log _{3} 27 x y$
(d) $\log _{4}(x y)^{3}-\log _{4} x y$
(e) $\log _{3} 9 x^{4}-\log _{3}(3 x)^{2}$

11/1/2014
IB Math HL1 - Santowski 19
(F) Examples

Exercise 2. Given $\log _{10}(5.0)=0.70 \log _{10}(2.0)=0.30 \log 10(3.0)=0.48$, without a calculator, determine:
(1) $\log _{10}(6.0)$
(2) $\log _{10}(8.0)$
(4) $\log _{10}(15$.
(5) $\log _{10}\left(\frac{2}{3}\right)$
(6) $\log _{10}(0.40)$
(7) $\log _{10}\left(\frac{4}{15}\right)$
(8) $\log _{10}(\sqrt{5.0})$
(8) $\log _{10}(\sqrt{5.0})$
(9) $\log _{10}(\sqrt[4]{3.0})$
(10) $\log _{10}(0.036)$

[^0]: 11/1/2014

