

FAST FIVE

- Go to the following DESMOS interactive graph from the lesson notes page and play with it to the end that you can explain what is going on.
- CONTEXT $\rightarrow \$ 1000$ invested at 6% p.a compounded n times per year.

Lesson Objectives

- (1) Investigate a new base to use in exponential applications
- (2) Understand WHEN the use of base e is appropriate
- (3) Apply base e in word problems and equations

(A) Working with Compounding Interest

- Determine the value after 2 years of a $\$ 1000$ investment under the following investing conditions:
- (a) Simple interest of 10% p.a
- (b) Compound interest of 10% pa compounded annually
- (c) Compound interest of 10% pa compounded semiannually
- (d) Compound interest of 10% pa compounded quarterly
- (e) Compound interest of 10% pa compounded daily
- (f) Compound interest of 10% pa compounded n times per year
4
11/1/2014
IBHL1 - Santowski

(B) Introducing Base e

- Take $\$ 1000$ and let it grow at a rate of 10% p.a. Then determine value of the $\$ 1000$ after 2 years under the following compounding conditions:
- (i) compounded annually $=1000(1+.1 / 1)^{(2 \times 1)}=1210$
- (ii) compounded quarterly $=1000(1+0.1 / 4)^{(2 \times 4)}=1218.40$
- (iii) compounded daily $=1000(1+0.1 / 365)^{(2 \times 365)}=1221.37$
- (iv) compounded n times per year $=1000(1+0.1 / n)^{(2 \times n)}=? ? ? ?$

(B) Introducing Base e

- So we have the expression $1000(1+0.1 / \mathrm{n})^{(2 n)}$
- Now what happens as we increase the number of times we compound per annum \Rightarrow i.e. $\mathrm{n} \rightarrow \infty$?? (that is ... come to the point of compounding continuously)
- So we get the idea of an "end behaviour again:

$$
1000 \times\left(1+\frac{0.1}{n}\right)^{(2 \times n)} \text { as } n \rightarrow \infty
$$

11/1/2014
IBHL1 - Santowski

(B) Introducing Base e

- So we see a special end behaviour occurring:

$$
1000 \times\left(\left(1+\frac{1}{x}\right)^{x}\right)^{0.1 \times 2} \text { as } x \rightarrow \infty
$$

- Now we will isolate the "base" of $\left(1+\frac{1}{x}\right)$
- We can evaluate the limit a number of ways graphing or a table of values.
- Which simplifies to $1000 \times\left(\left(1+\frac{1}{x}\right)^{x}\right)^{0.142}$

11/1/2014 IBHLL - Santowski

11/1/2014 IBHLL - Santowski ${ }^{10}$

(B) Introducing Base e

- So we see a special "end behaviour" occurring:

$$
1000 \times\left(\left(1+\frac{1}{x}\right)^{x}\right)^{0.1 \times 2} \text { as } x \rightarrow \infty
$$

- We can evaluate the "base" $\left(1+\frac{1}{x}\right)^{x}$ by graphing or a table of values.
- In either case, $\quad e=\left(1+\frac{1}{x}\right)^{x}$ as $x \rightarrow \infty$
- where e is the natural base of the exponential function

11/1/2014 IBHLL - Santowski

(B) Introducing Base e

- So our original formula $1000 \times\left(\left(1+\frac{1}{x}\right)^{x}\right)^{0.1 \times 2}$ as $x \rightarrow \infty$ now becomes $A=1000 e^{0.1 \times 2}$ where the 0.1 was the interest rate, 2 was the length of the investment (2 years) and $\$ 1000$ was the original investment (so $\mathrm{A}=\mathrm{Pe}^{r t}$) \rightarrow so our value becomes $\$ 1221.40$
- And our general equation can be written as $\mathrm{A}=\mathrm{Pe}^{r t}$ where P is the original amount, r is the annual growth rate and t is the length of time in years

> 11/1/2014

IBHL1 - Santowski
${ }^{12}$

Lesson Objective \#2

- (2) Understand WHEN the use of base e is appropriate
- Recall our original question \rightarrow Determine the value after 2 years of a $\$ 1000$ investment under the following investing conditions:
- (a) Compound interest of 10% pa compounded annually
- (b) Compound interest of 10% pa compounded semi-annually
- (c) Compound interest of 10% pa compounded quarterly
- (d) Compound interest of 10% pa compounded daily
- All these examples illustrate DISCRETE changes rather than CONTINUOUS changes.

```
11/1/2014
``` IBHL1 - Santowski 13

\section*{Lesson Objective \#2}
- (2) Understand WHEN the use of base e is appropriate
- So our original formula \(1000 \times\left(\left(1+\frac{1}{x}\right)^{x}\right)^{0.1 \times 2}\) as \(x \rightarrow \infty\) now becomes \(\mathrm{A}=1000 \mathrm{e}^{0.1 \times 2}\) where the 0.1 was the annual interest rate, 2 was the length of the investment (2 years) and \(\$ 1000\) was the original investment \(\rightarrow\) BUT RECALL WHY we use " \(n\) " and what it represents
- Note that in this example, the growth happens continuously (i.e the idea that \(\mathrm{n} \rightarrow \infty\))

\section*{Lesson Objective \#3}
- (3) Apply base e in word problems and equations
\[
11 / 1 / 2014
\] IBHL1 - Santowski 15
(C) Working With Exponential Equations in Base e
- (i) Solve the following equations:
(i) \(e^{x^{2}-x}=e^{2}\)
(ii) \(\left(e^{x}\right)^{2}=\sqrt{e^{x+2}}\)
(ii) \(e^{-x^{2}}=\left(\frac{1}{e}\right)^{x}\)
(iv) \(e^{2 x-1}=\frac{1}{e^{3 x+1}}\)
(v) \(e^{x}=4\)
(vi) \(e^{x}=-5\)
(vii) \(e^{x}=1-x\)
(viii) \(e^{2 x}+6=5 e^{x}\)

\section*{(C) Working with \(\mathrm{A}=\mathrm{P} e^{\text {rt }}\)}
- So our formula for situations featuring continuous change becomes \(A=\mathrm{Pe}^{\mathrm{t}} \rightarrow \mathrm{P}\) represents an initial amount, \(r\) the annual growth/decay rate and \(t\) the number of years
- In the formula, if \(r>0\), we have exponential growth and if \(r<0\), we have exponential decay
\(\qquad\)
IBHL1-Santowski \({ }^{17}\)

\section*{(C) Examples}
- (i) I invest \(\$ 10,000\) in a funding yielding \(12 \%\) p.a. compounded continuously.
- (a) Find the value of the investment after 5 years.
- (b) How long does it take for the investment to triple in value?
- (ii) The population of the USA can be modeled by the eqn \(\mathrm{P}(\mathrm{t})=\) \(227 \mathrm{e}^{0.0093 t}\), where \(P\) is population in millions and \(t\) is time in years since 1980
(a) What is the annual growth rate?
- (b) What is the predicted population in 2015?
- (c) What assumptions are being made in question (b)?
- (d) When will the population reach 500 million?

> 11/1/2014

IBHL1 - Santowski
18

\section*{(C) Examples}
- A population starts with 500 viruses that grows to a population of 600 viruses in 2 days.
- (a) Assuming LINEAR GROWTH, write a linear model (\(u_{n}=u_{1}+(n-1) d\)) for population growth
- (b) Assuming DISCRETE EXPONENTIAL GROWTH, write an exponential model (\(u_{n}=u_{1} r^{n-1}\)) for population growth
- (c) Assuming CONTINUOUS EXPONENTIAL GROWTH, write an exponential model \(\left(A=A_{0} e^{\text {t }}\right)\) for population growth.
- Use your models to predict the number of viruses in one month.
- Explain WHY it is important to work with APPROPRIATE and ACCURATE models, given the recent Ebola outbreak in West Africa

11/1/2014 IBHL1-Santowski 19

\section*{(C) Examples}
- (iii) A certain bacteria grows according to the formula \(A(t)=\) \(5000 \mathrm{e}^{0.4055 \mathrm{t}}\), where t is time in hours.
- (a) What will the population be in 8 hours
- (b) When will the population reach \(1,000,000\)
- (iv) The function \(P(t)=1-e^{-0.0479 t}\) gives the percentage of the population that has seen a new TV show t weeks after it goes on the air.
- (a) What percentage of people have seen the show after 24 weeks?
(b) Approximately, when will \(90 \%\) of the people have seen the show?
- (c) What happens to \(P(t)\) as \(t\) gets infinitely large? Why? Is this reasonable?

\footnotetext{
11/1/2014
}

IBHL1 - Santowski
20

\section*{(F) Examples with Applications}
- Two populations of bacteria are growing at different rates. Their populations at time \(t\) are given by \(P_{1}(t)=5^{t+2}\) and \(P_{2}(t)=e^{2 t}\) respectively. At what time are the populations the same?```

