

(B) Solving Strategy #2 - Graphic Solutions

Solve the following equations graphically.

IB Math HI. - Sant

(i) $8^x = 2^{x+1}$

(ii) 3^x = 53

(iii) $2^{x} = 3$

10/26/2014

(iv) $2^{4x-1} = 3^{1-x}$

(E) Solving Strategies – Algebraic Solution #1

- The next couple of examples relate to composed functions \rightarrow quadratic fcns composed with exponential fcns:
- Ex: Let f(x) = 2^x and let g(x) = x² + 2x, so solve fog(x) = $\frac{1}{2}$ \rightarrow i.e. Solve $2^{x^2+2x} = \frac{1}{2}$

10/26/2014

• Ex: Let $f(x) = x^2 - x$ and let $g(x) = 2^x$, so solve $fog(x) = 12 \rightarrow i.e.$ Solve $2^{2x} - 2^x = 12$ IB Math HL - Santowski

(F) Examples with Applications

10/26/2014

■ Example 1 → Radioactive materials decay according to the formula $N(t) = N_0(1/2)^{t/h}$ where N_0 is the initial amount, t is the time, and h is the half-life of the chemical, and the (1/2) represents the decay factor. If Radon has a half life of 25 days, how long does it take a 200 mg sample to decay to 12.5 mg?

IB Math HI. - Santowski

17

(F) Examples with Applications

10/26/2014

Two populations of bacteria are growing at different rates. Their populations at time *t* are given by P₁(t) = 5^{t+2} and P₂(t) = e^{2t} respectively. At what time are the populations the same?

IB Math HL - Santowski

