## Lesson 16- Solving Exponential Equations

IB Math HL - Santowski
10/26/2014 IB Math HL- Santowski IB Math HL. Santowski

## Lesson Objectives

- (1) Establish a context for the solutions to exponential equations
- (2) Review \& apply strategies for solving exponential eqns:
(a) guess and check
(b) graphic
(c) algebraic
- (i) rearrange eqn into equivalent bases
- (ii) isolate parent function and apply inverse


## (A) Context for Equations

- Write and then solve equations that model the following scenarios:
- ex. 1 The model $P(t)=P_{0} 2^{t / d}$ can be used to model bacterial growth. Given that a bacterial strain doubles every 30 minutes, how much time is required for the bacteria to grow from an initial 100 to 25,600 ?
- ex 2 . The number of bacteria in a culture doubles every 2 hours. The population after 5 hours is 32,000 . How many bacteria were there initially?

10/26/2014 IB Math HL- Santowski
vski

$$
0
$$

## Lesson Objective \#2 - Solving Eqns

- Review \& apply strategies for solving exponential eqns:
- (a) guess and check
(b) graphic
(c) algebraic
- (i) rearrange eqn into equivalent bases
- (ii) isolate parent function and apply inverse

0/26/2014
IB Math HL. Santowski
(A) Solving Strategy \#1 - Guess and Check

- Solve $5^{x}=53$ using a guess and check strategy
- Solve $2^{\mathrm{x}}=3$ using a guess and check strategy

|  |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |
| $10 / 26 / 2014$ | IB Math HL-Santowski | ${ }^{6}$ |

## (A) Solving Strategy \#1 - Guess and Check

- Solve $5^{x}=53$ using a guess and check strategy
- we can simply "guess \& check" to find the right exponent on 5 that gives us $53 \rightarrow$ we know that $5^{2}=25$ and $5^{3}=$ 125, so the solution should be somewhere closer to 2 than 3
- Solve $2^{x}=3$ using a guess and check strategy
- we can simply "guess \& check" to find the right exponent on 2 that gives us $3 \rightarrow$ we know that $2^{1}=2$ and $2^{2}=4$, so the solution should be somewhere between to 1 and 2

10/26/2014 IB Math HL- Santowski
(B) Solving Strategy \#2 - Graphic Solutions

- Going back the example of $5^{x}=53$, we always have the graphing option
- We simply graph $\mathrm{y}_{1}=5^{\mathrm{x}}$ and simultaneously graph $\mathrm{y}_{2}$ $=53$ and look for an intersection point (2.46688, 53)



## (C) Solving Strategy \#3 - Algebraic Solutions

- We will work with 2 algebraic strategies for solving exponential equations:
- (a) Rearrange the equations using various valid algebraic manipulations to either (i) make the bases equivalent or (ii) make the exponents equivalent
- (b) Isolate the parent exponential function and apply the inverse function to "unexponentiate" the parent function

10/26/2014 IB Math HL- Santowski

## (E) Solving Strategies - Algebraic Solution \#1

- This prior observation sets up our general equation solving strategy $=>$ get both sides of an equation expressed in the same base
- ex. Solve and verify the following:
(a) $(1 / 2)^{x}=4^{2-x}$
(b) $3^{y+2}=1 / 27$
- (c) $(1 / 16)^{2 a-3}=(1 / 4)^{a+3}$
(d) $3^{2 x}=81$
- (e) $5^{2 x-1}=1 / 125$
(f) $36^{2 x+4}=\sqrt{ }\left(1296{ }^{x}\right)$

If two powers are equal and they have the same exponents, then the bases must be the same - ex. if $b^{x}=a^{y}$ and $x=y$, then $a=b$.

10/26/2014 IB Math HL- Santowski ${ }^{11}$

10/26/2014 IB Math HL- Santowski

## (E) Solving Strategies - Algebraic Solution \#1

- The next couple of examples relate to composed functions $\rightarrow$ quadratic fcns composed with exponential fcns:
- Ex: Let $f(x)=2^{x}$ and let $g(x)=x^{2}+2 x$, so solve fog $(\mathrm{x})=1 / 2$
- Ex: Let $f(x)=x^{2}-x$ and let $g(x)=2^{x}$, so solve fog $(\mathrm{x})=12$

10/26/2014 IB Math HL- Santowski 13

## (E) Solving Strategies - Algebraic Solution \#1

- The next couple of examples relate to composed functions $\rightarrow$ quadratic fcns composed with exponential fcns:
- Ex: Let $f(x)=2^{x}$ and let $g(x)=x^{2}+2 x$, so solve fog $(\mathrm{x})=1 / 2 \rightarrow$ i.e. Solve $2^{x^{2}+2 \mathrm{x}}=1 / 2$
- Ex: Let $f(x)=x^{2}-x$ and let $g(x)=2^{x}$, so solve $f o g(x)=12 \rightarrow$ i.e. Solve $2^{2 x}-2^{x}=12$

10/26/2014 IB Math HL- Santowski

## Lesson Objective \#1 - Context for

 Exponential Equations- (1) Establish a context for the solutions to exponential equations
(a) $2^{x}=8$
(b) $2^{\mathrm{x}}=1.6$
(c) $2^{x}=11$
(d) $2^{x}=32^{2 x-2}$
(e) $2^{4 x+1}=8^{1-x}$
(f) $2^{x^{2}-4}=8^{x}$
(g) $2^{3 x+2}=9$
(h) $3\left(2^{2 x-1}\right)=4^{-x}$
(i) $2^{4 y+1}-3^{y}=0$

10/26/2014
IB Math HL- Santowski 15 15

## F) Examples with Applications

- Example $1 \rightarrow$ Radioactive materials decay according to the formula $N(t)=N_{0}(1 / 2)^{t / h}$ where $\mathrm{N}_{0}$ is the initial amount, t is the time, and h is the half-life of the chemical, and the $(1 / 2)$ represents the decay factor. If Radon has a half life of 25 days, how long does it take a 200 mg sample to decay to 12.5 mg ?


## (F) Examples with Applications

- Example $2 \rightarrow$ A financial investment grows at a rate of $6 \% / \mathrm{a}$. How much time is required for the investment to double in value?
- Example $3 \boldsymbol{\rightarrow}$ A financial investment grows at a rate of $6 \% /$ a but is compounded monthly. How much time is required for the investment to double in value?


## (F) Examples with Applications

- Two populations of bacteria are growing at different rates. Their populations at time $t$ are given by $\mathrm{P}_{1}(\mathrm{t})=5^{t+2}$ and $\mathrm{P}_{2}(\mathrm{t})=e^{2 t}$ respectively. At what time are the populations the same?


## (F) Examples with Applications

- ex 1. Mr. S. drinks a cup of coffee at 9:45 am and his coffee contains 150 mg of caffeine. Since the half-life of caffeine for an average adult is 5.5 hours, determine how much caffeine is in Mr. S.'s body at class-time ( $1: 10 \mathrm{pm}$ ). Then determine how much time passes before I have 30 mg of caffeine in my body.
- ex 2 . The value of the Canadian dollar, at a time of inflation, decreases by $10 \%$ each year. What is the halflife of the Canadian dollar?


## (F) Examples with Applications

- ex 5 . Dry cleaners use a cleaning fluid that is purified by evaporation and condensation after each cleaning cycle. Every time it is purified, $2 \%$ of the fluid is lost
(a) An equipment manufacturer claims that after 20 cycles, about two-thirds of the fluid remains. Verify or reject this claim.
- (b) If the fluid has to be "topped up" when half the original amount remains, after how many cycles should the fluid be topped up?
- (c) A manufacturer has developed a new process such that two-thirds of the cleaning fluid remains after 40 cycles. What percentage of fluid is lost after each cycle?


## (F) Examples with Applications

- Write and then solve equations that model the following scenarios:
- Ex 1.320 mg of iodine-131 is stored in a lab for 40d. At the end of this period, only 10 mg remains.
- (a) What is the half-life of I-131?
- (b) How much l-131 remains after 145 d ?
- (c) When will the $\mathrm{I}-131$ remaining be 0.125 mg ?
- Ex 2. Health officials found traces of Radium F beneath P044. After 69 d , they noticed that a certain amount of the substance had decayed to $1 / \sqrt{ } 2$ of its original mass. Determine the half-life of Radium $F$
- Ex 2. Find the length of time required for an investment of $\$ 1000$ to grow to $\$ 4,500$ at a rate of $9 \%$ p.a. compounded quarterly.


## (F) Examples with Applications

- Ex 1. An investment of $\$ 1,000$ grows at a rate of $5 \%$ p.a. compounded annually. Determine the first 5 terms of a geometric sequence that represents the value of the investment at the end of each compounding period.

正

